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Abstract
Themaximumoperational range of continuous variable quantumkey distribution protocols has
shown to be improved by employing high-efficiency forward error correction codes. Typically, the
secret key ratemodel for such protocols ismodified to account for the non-zeroword error rate of
such codes. In this paper, we demonstrate that thismodel is incorrect: firstly, we showby example that
fixed-rate error correction codes, as currently defined, can exhibit efficiencies greater than unity.
Secondly, we show that using this secret keymodel combinedwith greater than unity efficiency codes,
implies that it is possible to achieve a positive secret key over an entanglement breaking channel—an
impossible scenario.We then consider the secret keymodel from a post-selection perspective, and
examine the implications for key rate if we constrain the forward error correction codes to operate at
lowword error rates.

Introduction

Quantumkey distribution is one of themost advanced applications of quantumphysics and information
science. It enables the distribution of information-theoretically secure randomkeymaterial between two parties
in spatially separated locations connected by an unsecured optical link [1].

There are two complementary approaches to quantumkey distribution: discrete variable quantumkey
distribution uses single-photon orweak coherent states and single photon detectors [2], while continuous
variable quantumkey distribution (CVQKD) uses coherent or squeezed states of light and homodyne detectors
[3]. Both discrete and continuous quantumkey distribution systems have been demonstrated (for a review see
[4]) and importantly both the discrete and continuous approaches to quantumkey distribution have been
proven to be information-theoretic secure, the latter against collective attacks [5, 6] andwith composable
security [7].

CVQKDhas gained interest recently because of the potential technology advantages it offers thatmay enable
higher secret key rates. Technological advantages include high-quantum efficiency homodyne detectors; high-
speed commercial-off-the-shelf optical components and compatibility with optical network infrastructure.

Originally limited to short distances [8], the operation range of CVQKDprotocols was considerably
extended by employing the reverse reconciliation protocol that exploits one-way communication, including
forward error correction codes in the error reconciliation post processing step [9]. Lowdensity party check
(LDPC) andmulti-edge LDPC (ME-LDPC) codes are examples of high-efficiency forward error correction
codes that have been employed inCVQKD systems [10–15]. TheME-LDPC codes in particular exhibit good
error correction performances at low signal-to-noise (SNR) ratios,making them suitable for CVQKD
applications.
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A simple and usefulmodel for the secret key rate of CVQKDprotocols in the case of collective attacks can
derivedwhen one assumes a specific reconciliation procedure. Specifying the reconciliation procedure to be
forward error reconciliation, the secret key rate can then be empiricallymodeled by [16]

bD = - ( )I I I , 1AB E

where IE denotes the bound on an eavesdropper’s (Eve’s)maximumaccessible information, IAB denotes the
capacity of the channel between the sender (Alice) and the receiver (Bob), andβ denotes the efficiency of
reconciliation.

Themodel for the secret key rate in equation (1) is commonly used in the literature to compare the
performance of CVQKDprotocols under varying conditions, for example, different amounts of loss and noise.
Importantly, equation (1) assumes that that every codeword of the forward error correction code is decoded
correctly.

Practical applications ofME-LDPC and LDPC codes inherently exhibit a non-zeroword error rate (WER)
[10, 17]. TheWER is the rate at which the decoder fails to decode the correct codewords. Since the adoption of
forward error correction codes inCVQKD systems, themodel of the secret key rate has been subsequently
modified to include the efficiency andWERof the code [10, 15]

bD = - -( )( ) ( )I I I p1 , 2AB E fail

where pfail is the rate at which the decoder fails to decode to a valid codeword.We point out that it is not clear if
this secret keymodel was formally derived.We also note that for all error correction schemes there is always a
non-zero probability that a valid, but incorrect, codeword could be returned. I.e. the decoder will fail but will not
know that it has failed. This would not be detected byAlice and Bob, resulting in an incorrect secret keywhich
would not be discovered until the key is used. In our simulations, we have used the trueword error rate (aswe
have knowledge of the transmittedmessage so can detect all failures). In practice, this will not be possible,
however it it usually assumed that the undetected error rate is negligible.

In this paperwe show that the current keymodel equation (2) is incorrect. Firstly, we demonstrate that fixed-
rate error correction codes can exhibit efficiencies, β greater than unity for a range of word error rates. Secondly,
we show that by using the secret keymodel equation (2) combinedwithβ greater than unity, it is possible to
achieve a positive secret key over an entanglement breaking channel.We then consider the secret keymodel
from aCVQKDpost-selection perspective, and also examine the implications for key rate if we constrain the
forward error correction codes to operate at lowword error rates.

Forward error correction codeswithβ greater than unity

Since the adoption of forward error correction codes in CVQKDprotocols, themodel for secret key rate has
been formulated to account for the non-ideal performance of the forward error correction coding scheme. The
two sources of this non-ideal performance are (1) the losses due tomapping a binary error correction code onto
aGaussian-input channel, and (2) the losses due to the performance of a practical error correction code
compared to the ideal, capacity achieving, error correction code.

It has been shown [18] that entanglement-basedCVQKDprotocols are equivalent to so-called prepare-and-
measure CVQKDprotocols where Alice transmits Gaussianmodulated coherent states. In the latter case, if the
sender encodes withGaussian signals, amapping protocol can be used to transform theGaussian symbols to
binary symbols for subsequent error correction. Recent advances have beenmade on efficientmapping
protocols (for example see [19] and references therein), which have been shown to be highly efficient for low
SNR ratios, typically required for CVQKDprotocols [19].We denote the efficiency of themapping protocol,
compared to perfect Gaussianmapping by bMAP. Thismapping efficiency, although important, is not the focus
of this paper.

Following themapping step, reconciliation is then performed using an error correction code designed for
the binary-input additive Gaussianwhite noise (BI-AWGN) channel, in particular LDPC [10, 11] andME-LDPC
codes [12–15].

The efficiency of the forward error correction code is calculated according to [10, 13, 16]

b = ( )R

I
, 3FEC

AB

whereR=k/n is the rate of the error correction code thatmaps a k bitmessage to an n bit codeword, and IAB

denotes the capacity of the channel between the sender (Alice) and the receiver (Bob), i.e. the rate of the ideal
capacity-achieving code. The total efficiency of the reconciliation scheme is then

b b b= ( ). 4MAP FEC
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In the remainder of this paper wewill assume that b = 1MAP . Substituting equation (3) into equation (2)we
see that the key rate for a rateR=k/n forward error correction code operating at aWERof pfail can be calculated
as

D = - -( )( ) ( )I R I p1 . 5E fail

For LDPC andME-LDPC codes, the code performance at a given SNR (where the SNR is determined by the
parameters of the CVQKDprotocolmodel) can be determined theoretically by evaluating the expected
performance of an ensemble of infinite length codes with a particular structure using density evolution [20].
Density evolution returns the threshold of a rateR code ensemble, which is the smallest SNR atwhich the BER,
the fraction of codeword bits remaining in error following decoding, goes to zero as decoding proceeds. For a
given SNR,wefind the highest code rateRwith a threshold at or below that SNR. Thenβ is [13]

b =
( )

( )R

I s
, 6FEC

AB th

where ( )I sAB th is the rate of the capacity achieving code on anAWGNchannel with SNR equal to sth. The secret
key ratemodel with a rateR codewith threshold sth is

D = - ( ) ( )I R I s , 7E th

where ( )I sE th is the bound on the information leaked to Evewith SNR equal to sth and theWER is zero. By the
definition of the threshold, the code operates at a zero error rate and consequently ( )R I sAB th follows from the
channel coding theory and so b  1FEC .

In contrast, for anyfinite length code, the error rate is bounded away from zero. Instead, the performance of
finite-length error correction codes can be determined via simulation tofind the error rate curves (BER and
WER) for a particular code as the SNR is varied. Since the error rate decreases as the SNR is increased, the SNR
value at which a given codewill be operated, sop, will depend on theWER that can be tolerated by the application.
Thus the rateR of the error correction codewe can employ on a given channel will depend on theWERwe allow.

For example, the rate 0.02 code in [13] has a theoretical threshold (found using density evolution) of
=s 0.02865th . Consequently,

b =
=

= =
( )

( )R

I s 0.02865

0.02

0.02038
0.981, 8FEC

AB th

and the secret key ratemodel with SNR s=0.02865 is

D = - =( ) ( )I I s0.02 0.02865 . 9E

In practice, a length 220 rate 0.02 code operating at an SNRof s=0.029 has aWERof 1/3 [13]. Applying
equation (3), this gives

b =
=

= =
( )

( )R

I s 0.029

0.02

0.02062
0.97. 10FEC

AB op

The secret key ratemodel for this code operating at aWERof 1/3with SNR s=0.029 is

D = - =( ( )) ( )I I s2 3 0.02 0.029 . 11E

If we take the practice of allowing non-zeroWERs to the extreme, it is possible to significantly increase the
rateRwe can operate at a given SNR, s to above ( )I sAB , or equivalently, to operate at aβ above 1. For example,
figure 1 shows thefinite length performance of a rate 0.02 codewith degree-distribution from [13]when the
code length is 105 bits and amaximumof 5, 000 decoder iterations are allowed. By allowing aWERof 0.9999,
one can operatewith rate 0.02 at an SNRof 0.0258 and thus

b =
=
=

= =
( )

( )R

I s

0.02

0.0258

0.02

0.018374
1.09. 12FEC

AB op

The secret key ratemodel for this code operating at aWERof 0.9999with SNR s=0.0258 is

D = -( ( )) ( )I I0.00001 0.02 0.0258 . 13E

For the same code rate,R, increasing theWERhas allowed us to reduce s and thus reduce ( )I sE . Consequently,
the current secret key ratemodel informs us that by increasing theWERwe are able to increase the range of s for
which the same rateR code can operate.

Also shown infigure 1 is the Shannon capacity result for rate 0.02 codes andwe can see that theME-LDPC
code is in fact operating at an SNRbelow the Shannon channel capacity which is whyβ can be calculated as
greater than 1.Of course this code is not outperforming the Shannon channel capacity, rather the comparison is
not valid. Coding schemes with a non-zero error rate are not bound by the same capacity formula as schemes
with a zero error rate. It is well known that the capacity of the AWGNchannel varies as the BER is allowed to
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increase [21]. If the BER is below 10−4 the effect is insignificant [21], however, above this, the SNR required to
decode at the given BER reduces significantly if a non-zero error rate is allowed. Also shown infigure 1 is the
non-zero error-rate capacity. Indeed, if we consider that we are allowed to operate at error rates as high aswe
like, the results in [21] tell us that by operating close to the non-zero-error-rate capacity we can obtain a very
large increase in SNRover the zero-error-rate capacity and thus obtain a b 1 . Figure 2 showsβ results we
have obtained in practice for the code fromfigure 1 as theWER is varied.

In this sectionwe have demonstrated thatfixed-rate forward error correction codes operated at a non-zero
WER can operate at lower SNR than ideal codes operating at a zeroWER, thus returning aβ above unity.
Alternatively, if the SNR isfixed, operating the codes at higherWERs increases the code rateR that can be used
thereby increasing the likelihood thatwe can obtain a positive -( )R IE term in the secret keymodel. In the
following sectionwe demonstrate that this has important consequences for the validity of the key ratemodel, as
currently defined.

Codeswithβ greater than unity applied to unity-gain classical teleporter quantum
channels

Wehave demonstrated that is it possible to operate at a code rate above that of an ideal code by using, fixed-rate
forward error correction codes operating at sufficiently highWERs.Wewill nowdescribe a problem that arises
with the secret keymodel in equation (2)when considering codes operating at a non-zeroWER.

In quantum information theory, it has been shown that when a quantum channel is replacedwith a classical
teleporter [22], no entanglement can be transmitted through such a channel [18].

Figure 1.BER (blue solid curve) andWER (blue dashed curve) for a length 105 rate 0.02,ME-LDPC codewith degree distribution
from [13]with amaximumof 5000 decoder iterations. HereR is the code rate and s is the channel SNR. Also shown is the zero-error
channel capacity for this code rate (solid black curve) and the non-zero error channel capacity for this code rate (dashed black curve).
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As a consequence, in the context of quantumkey distribution, no secret key can be established through such
a quantum channel [23]. Such a channel would be equivalent to an intercept-and-resend attack.

AGaussian quantum channel is completely described by the channel transmission and the channel excess
noise [9]. In the casewhere a quantum channel is replaced by a classical teleporter operating at unitary gain [22],
the quantum channel parameters are described by a transmissionT=1 and a (relative input) excess noise
of e = 2.

From equation (2), we can see that the secret keymodel is positive when

b > ( )I

I
, 14E

AB

this is equivalent to >R IE from the previous section.We can therefore calculate theβ required to achieve a
positive rate in the secret keymodel.

Figure 3 shows the value ofβ required to achieve a positive secret key for the followingCVQKDprotocols:
coherent or squeezed state sources; homodyne or heterodyne detection; and direct and reverse reconciliation
protocols (for details see [24]). Infigure 3, we have assumed collective attacks, asymptotic key lengths, and ideal
detection efficiency. An example of the equations describing the channel capacity (IAB) and Eve’smaximum

Figure 2.The values ofβ, equation (3), obtained for the length 105 rate 0.02,multi-edge LDPC codewith degree distribution from [13]
with amaximumof 5000 decoder iterations.

Figure 3.Theβ required to achieve a positive secret key rate for a unity-gain classical teleporter quantum channel for variousGaussian
CVQKDprotocol configurations: direct reconciliation (blue) and reverse reconciliation (red); Squeezed states and homodyne
detection (solid line); coherent states and homodyne detection (dotted line); coherent states and heterodyne detection (dotted–dashed
line); squeezed states and heterodyne detection (dashed line).β is plotted versus Alice’s transmitted state variance ( )V .
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accessible information (IE) are detailed in appendix A. Figure 3 plots the requiredβ verses Alice’s transmitted
state variance ( = +V V 1A ), which is the only free parameter and is normalized to the quantumnoise limit.

Figure 3 shows thatβs only slightly greater than unity are required to achieve a positive key rate for a number
ofGaussianCVQKDprotocols operating over a unity-gain classical teleporter quantum channel. In the previous
sectionwe demonstrated that the secret key ratemodel equation (1) can lead to greater than unityβ. This is in
addition to recent advances inGaussian to binarymapping protocols which have demonstrated high efficiencies
at low-SNR ratios (for example see [19]). Finally, we note that greater bFEC values could be obtained by operating
poorer FEC codes, poorer in the sense of a slower drop off in error ratewith increasing SNR above capacity, as
these codes can also have a slower increase in error ratewith decreasing SNRbelow capacity.

Adiscussion on the secret key ratemodel

In the previous sectionwe demonstrated that the secret key ratemodels given by equations (2) and (5) give
incorrect results when employing fixed-rate forward error correction and operating over a range of highWERs.
It is logical to reason that the secret key ratemodelsmay then be incorrect for all non-zeroWERs. And since
applications offixed-rateME-LDPC codes are operated at quite highWERs, it is logical to conclude that the
secret keymodel is incorrect when such codes are used in the the error reconciliation procedure [10–15].

In the followingwe discuss how the current secret key ratemodelmay be incorrect.

ACVQKDpost-selection perspective
Herewemake the observation that the act of choosingwhich codewords to keep or discard based on their
decoding performance is equivalent to a formof post-selection. In a general CVQKDpost-selection protocol,
Alice and Bob discard a subset of their data in-order to gain an information advantage over Eve. Likewise, in an
error reconciliation process, Alice and Bob ‘post-select’ the transmittedwords that decoded to correct
codewords and discard those that did not.

A secret key ratemodel has been proposed in the context of the CVQKDpost-selection protocol [25]. The
secret key ratemodel for a general protocol with post-selection is [16]

bD = - ( )I f I I , 15PS AB E

where f is the fraction of post-selected data. This secret key ratemodel is not known to be tight and can be treated
a pessimistic lower bound [16]. In the forward error correction context, the selected data is the set of codewords
that have been decoded to a valid codeword and so a failure rate of pfail results in the fraction = -f p1 fail of the
transmitted codewords being post selected, which gives a post selection key rate of

bD ¢ = - -( ) ( )I p I I1 . 16fail AB E

An interpretation of thismodel is that all of Eve’s information is retained and distilled into remaining key bits
after error correction in the case of the finite failure probability of the forward error correction system.

We consider the performance ofME-LDPC codes as the reconciliation step in aCVQKD system as described
in [13,figure 5] using both the traditional secret keymodel equation (2) and the post-selection secret keymodel
equation (16).

Figure 4 shows the secret keymodels (equations (2) and (16)) assuming collective attacks and employing
reverse reconciliation, Gaussianmodulated coherent states and homodyne detection. Bothmodels utilize six
ME-LDPC codes in the reconciliation procedure with performance data points ( bR s, , WER, ) as reported in
[13] and choose the value of signal variance, < <V1 100A corresponding to the given SNR, s. In short, we have
simply applied the same six data points from [13] to both equations (2) and (16) using the sameCVQKD
parameters in [13].

Figure 4 shows the impact of a high-WERon both the secret key rate and operational range of the secret key
model equation (16)where a highWER impacts both the secret key rate and operational range of the protocol.
This suggests that itmay be better to operate the FEC codes at amuch lowerWER tomaximize performance.

To examine this further, figure 5 shows the effect on the key rate calculation for a set ofME-LDPC codes
whenwe jointly optimized over SNR,WERand code rate. TheCVQKD system is the same as described above for
figure 4.We considerME-LDPC codeswith length 105 and rates 0.5, 0.1, 0.05, 0.02, and 0.005with degree
distributions as in [13]. For simplicity, we have assumed zero loss in efficiency due toGaussian to binary
mapping, have ignored finite length effects in all cases and have not placed any limitation onVA. To obtain the
values for SNR andWER for each codewe simulated their performance on the BI-AWGNchannel over a range
of SNRs andWERs (see appendix B formore detail on the optimization of the parameters).

Figure 5 emphasizes the problemwith the secret keymodel equation (2). For high transmission losses, the
optimized key rate corresponds to a high-WERwithβ above 1. This corresponds to a better key rate than a
theoretically optimal code b =( 1,WER=0). In contrast, figure 5 shows the secret keymodel equation (16).
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The secret key rate for thismodel is optimized at significantly lowerWERswith codes operating at lowerβ
values.We emphasize that the secret keymodel equation (16) is a conservativemodel of the secret key rate.

Operating at lowword error rates
Increasing theWER allows us to increase the code rateR above IAB thereby giving a positive

b - = -I I R I ,AB E E

term evenwhen <I IAB E. Themultiplicative correction term (1−WER) simply scales down the key rate leaving
it positive.

Figure 4. Secret keymodels assuming collective attacks and employingME-LDPC codes in the reconciliation procedure. TheCVQKD
protocol assumes reverse reconciliation, Gaussianmodulated coherent states and homodyne detection. SameCVQKDparameters as
[13]: Î { }V 1, 100A modulation variance; e = 0.01 relative input channel excess noise; h = 0.6 homodyne efficiency; n = 0.01el

detector electronic noise; =WER 1 3. Solid blue: key ratemodel equation (2), dashed red: key ratemodel equation (16). From right
to left theME-LDPC code parameters ( bR s, , WER, ), are [13] ( )0.005, 0.00725, 0.33, 0.959 , ( )0.01, 0.0145, 0.33, 0.966 ,
( )0.02, 0.029, 0.33, 0.969 , ( )0.05, 0.075, 0.33, 0.958 , ( )0.1, 0.0.161, 0.33, 0.931 and ( )0.5, 1.097, 0.33, 0.936 . There is no dashed
red curve shown for the ( )0.005, 0.00725, 0.33, 0.959 code as the key rate equation equation (16) returns zero key bits for this code.

Figure 5. Secret keymodels assuming collective attacks and employingME-LDPC codes in the reconciliation procedure. Same
CVQKDparameters asfigure 4. The key ratemodels have been optimized over all (R s, , WER b, ) points for the sixME-LDPC codes.
TheME-LDPC codes with length 105 bits and rates 0.5, 0.1, 0.05, 0.02, 0.01, and 0.005 are constructed randomly with degree
distributions as given in [13]. The dash–dot black curve gives the key rate for a theoretically optimal code b =( 1, WER=0). The
solid blue curve gives the key rate calculated traditionally via equation (2)while the dashed red curve gives the key rate calculated via
equation (16). See appendixB formore information on the data used to generate these curves.
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Aswe showed infigure 1, the error rate permitted has a significant effect on the code rate that can be achieved
if it is allowed to be large. Of interest would be the operation of the forward error correction codes at error rates
low enough so that the difference between the two cases is negligible. ForME-LDPC codes thismeans operating
each code at a lower SNRor equivalently operating amuch lower rate code at the same SNR. As an example,
figure 6 shows the key rate we can obtain by using the same codes as the previous examples but limiting their
operation to SNRswhere theWER is below 0.05. Despite still allowing a quite highWER, a significant key rate
loss is observed. This indicates that the highWER allowed previously played an important role in reporting good
key rates.

While itmay be possible, through good code design, to improve the codeWERperformance ofME-LDPC
codes to some extent, forfixed rate codes therewill always be a trade-off between operating at a SNR that returns
a good efficiency and operating at an SNR that returns a lowword error rate. Nevertheless, there are alternative
forward error correction strategies that do not usefixed-rate forward error correction codes. Insteadwe can
employ so-called rateless Raptor codes that adjust the code rate in real time so as to always decode to a valid
codeword, returning codes with both lowword error rates and high efficiencies.

Raptor codes are graph based codes formed from the concatenation of a high rate LDPC codewith a Luby
transform (LT) code. LT codes [26] have very simple encoding and decoding processes and can approach the
capacity of binary erasure channels with an unknown erasure rate. The encoding and decoding of Raptor codes
are linear in terms of themessage length; thus practical for applications with large data transmission. Raptor
codes were studied for AWGNchannels in [27], where a systematic frameworkwas proposed tofind the optimal
degree distribution across a range of SNRs. The design of very low rate Raptor codes was studied in [28]. Using
Raptor codes, a potentially limitless number of coded symbols can be generated, allowing the receiver to decode
themessage once a sufficient number of parity bits have been received; thus always decoding to a valid codeword.

It has been shown [29] that low-rate Raptor codes can achieve higher efficiencies in comparisonwith the
fixed rateME-LDPC codes in the entire SNR range and do so at very lowWERs.When applied to the
reconciliation step of CVQKD,Raptor codes can significantly improve the key rate [29]. For example, figure 7
shows the key rate of the sameCV-QKD system as considered infigure 4 applying theRaptor codes from [27, 29]
(see appendix C formore detail). For the Raptor codes the twomodels, equations (2) and (16), return the same
key-rate.

Anewmodel
A full solution to this problem is non-trivial because themodel involves finite-size effects (i.e. imperfect error
correction) and asymptotic quantities. Such a solutionwould require amodel of the number of bits revealed
during the reconciliation procedure based on the particular code used, and how this quantity behaves in the
asymptotic limit.

Protocols with a complete security proof in thefinite-size regimes exist, for instance [30]. Such proofs for
reconciliation using forward error correctionwill require amodel of the number of bits leaked during the

Figure 6. Secret keymodels assuming collective attacks and employingME-LDPC codes in the reconciliation procedure. Same
CVQKDparameters asfigure 4. The key ratemodels have been optimized over all (R s, , WER b, ) points such that <WER 0.05 for
the sixME-LDPC codes. TheME-LDPC codes with length 100 000 bits and rates 0.5, 0.1, 0.05, 0.02, 0.01, and 0.005 are constructed
randomly with degree distributions as given in [13]. The dash–dot black curve gives the key rate for a theoretically optimal code
b =( 1, WER=0). The solid red curve gives the key rate calculated traditionally via equation (2).
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forward error correction reconciliation procedure as a function of theWER, and any uncertainty in it, as well as
the codeword length andmeasurement errors.

Conclusion

Themaximumoperation range of CVQKD systems has shown to be improved by employing high-efficiency
forward error correction codes such asME-LDPC codes. In the current literature, CVQKDprotocols with fixed-
rate forward error correction codes typically use amodified secret keymodel equation (2) that includes the
WER term.

In this paper, we have demonstrated that this secret keymodel is incorrect.We demonstrated this in two
steps. Firstly, we showed that previously usedME-LDPC codes for a range of highword error rates, exhibited
efficiencies greater than unity. Secondly, we showed that assuming that code efficiencies could be greater than
unity, then using the secret keymodel equation (2), it was possible to achieve a positive secret key over an
entanglement breaking channel, which is equivalent to an intercept and resend attack—an impossible scenario.
We concluded that if the secret keymodel is incorrect for a range of highWERs, it is also possibly incorrect for
any non-zeroWERs.

We subsequently discussed the secret keymodel from the perspective of CVQKDpost-selection protocols.
In aCVQKDpost-selection protocol, Alice and Bob discard a subset of their data in-order to gain an
information advantage over Eve. Similarly, in an error reconciliation process, Alice and Bob ‘post-select’ the
codewords that decoded to valid codewords and discard codewords that theywere unable to decode. This secret
key ratemodel is not known to be tight but can be treated as a lower bound [16].We showed that using the post
selection key ratemodel reduces the previously reported operational range of suchCVQKD systems employing
fixed length forward error correction codes.We also showed that using the current secret key ratemodel, but
restricting the codes to operate at lowerWERs, can also reduce the previously reported operational range of
CVQKD systems employingfixed length forward error correction codes. However, we did show that it is
possible to employ an alternative forward error correction coding solution in the formof Raptor codes, which
provide high efficiencies while operating at very lowWERs.

A full solution to this problemwould require amodel of the number of bits revealed during the
reconciliation procedure based on the particular code used, and how this quantity behaves in the asymptotic
limit. Until such amodel is knownwewould suggest that key rates obtained using the currentmodel while
operating at highWERsmay not be accurate.

Figure 7. Secret keymodels assuming collective attacks and employing for Raptor andME-LDPC codes in the reconciliation
procedure. SameCVQKDparameters asfigure 4. For bothME-LDPC andRaptor codes, the secret key ratemodel has been optimized
over the parameters (R s, , bWER, ). TheME-LDPC codeswith codeword length =n 105 bits and rates 0.5, 0.1, 0.05, 0.02, 0.01, and
0.005 are constructed randomlywith degree distributions as given in [13]. The raptor codes withmessage length =k 104 are
constructed randomly with degree distributions as given in appendix C. The dash–dot black curve gives the key rate for a theoretically
optimal code b =( 1, WER=0). Solid green curve: the key ratemodel for Raptor codes via equation (16). Dashed red curve: key rate
model forME-LDPC codes via equation (16).
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AppendixA

In this sectionwe detail Alice andBob’s channel capacity aswell as Eve’s information for theGaussian protocol
with reverse reconciliation and employing coherent states and homodyne detection.Herewe assume collective
attacks and asymptotic key lengths. The free parameters in these equations are the following:V variance of the
transmitted state;T quantum channel with transmission; ε relative input channel excess noise; η homodyne
efficiency; nel detector electronic noise. Alice and Bob’s channel capacity ( )IAB and Eve’s information ( )IE are
described by the following compact set of equations [31].

c
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The complete set of Gaussian protocol configurations, includes: squeezed states and homodyne detection;
coherent states and heterodyne detection and squeezed states and heterodyne detection. These protocols are
described in detail elsewhere [24] in the case of ideal homodyne detector efficiency and ideal forward error
correction codes.

Appendix B

In this sectionwe provide details for optimizing the secret key ratemodels shown infigure 5.We considerME-
LDPC codeswith length 100 000 and rates 0.5, 0.1, 0.05, 0.02, and 0.005with degree distributions as in [13]. The
parity-checkmatrices were constructed randomly subject to the degree distribution constraints. Figure B1
shows the performance of theME-LDPC codeswith rates 0.005, 0.01, 0.02, 0.05, 0.1 as the channel SNR is
varied.
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We then jointly optimized over SNR,WER and rate tomaximize the secret key rate for each transmission
distance. Thefinal secret key rate is themaximumkey rate over all codes. Infigures B2–B5, the solid red curves
give the parameters which optimize the key rate calculated via equation (2)while the dashed red curves give the
parameters which optimize the key rate calculated via equation (16).

AppendixC

Weconsider twoRaptor codes in this paper. Thefirst code, from [28], has degree distribution

W = + + +
+ + + +
+ + +
+ + +

( )

( )

x x x x x

x x x x

x x x

x x x

0.0035 0.3538 0.2337 0.0737

0.0755 0.0262 0.0608 0.0493

0.0255 0.0002 0.0454

0.0072 0.0180 0.0272 . 33

2 3 4

5 6 7 11

12 21 23

57 58 300

Figure B1.WERversus SNR for the consideredME-LDPC codes from left to right are theME-LDPC codes with rates 0.005, 0.01, 0.02,
0.05, 0.1.

Figure B2.Optimized code rate versus distance for key rate equations equation (2) (solid blue) compared to key rate equations
equation (16) (dashed red curve).
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Figure B3.Optimized SNR versus distance for key rate equations equation (2) (solid blue) compared to key rate equations
equation (16) (dashed red curve).

Figure B4.OptimizedWERversus distance for key rate equations equation (2) (solid blue) compared to key rate equations
equation (16) (dashed red curve).

Figure B5.Optimizedβ versus distance for key rate equations equation (2) (solid blue) compared to key rate equations equation (16)
(dashed red curve).
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The secondRaptor code, from [27], has degree distribution

W = + + +
+ + + +
+ +

( )

( )

x x x x x

x x x x

x x

0.0146 0.3766 0.0677 0.2946

0.1291 0.0060 0.0341 0.0228

0.0073 0.0472 . 34

1 2 3 4

9 12 24 29

43 200

See [27, 28] for details on encoding and decoding algorithms for these codes. FigureC1 shows the simulated
efficiency for these codes on anAWGNchannel as the SNR is varied.
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