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Abstract 
Entangled quantum networks are a necessity for any future quantum internet, long-
distance quantum key distribution, and quantum repeater networks. The entangled 
quantum nodes can communicate through several different levels of entanglement, lead-
ing to a heterogeneous, multi-level entangled network structure. The level of entangle-
ment between the quantum nodes determines the hop distance, the number of spanned 
nodes, and the probability of the existence of an entangled link in the network. In this 
work we define a decentralized routing for entangled quantum networks. We show that 
the probability distribution of the entangled links can be modeled by a specific distribu-
tion in a base-graph. The results allow us to perform efficient routing to find the shortest 
paths in entangled quantum networks by using only local knowledge of the quantum 
nodes. We give bounds on the maximum value of the total number of entangled links of 
a path. The proposed scheme can be directly applied in practical quantum communica-
tions and quantum networking scenarios. 
 
Keywords: quantum networking; quantum repeater; quantum entanglement; quantum 
communication; quantum Shannon theory. 
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1  Introduction 

Entangled quantum networks are a necessity for future quantum internet, long-distance quan-

tum key distribution, and quantum repeater networks [2-8]. In an entangled quantum network, 

the quantum nodes communicate with each other through entangled links. These entangled 

quantum nodes can share several different levels of entanglement, leading to a heterogeneous, 

multi-level entanglement network structure. The level of entanglement between the quantum 

nodes determines the achievable hop distance, the number of spanned intermediate nodes, and 

the probability of the existence of an entangled link [2, 7-8]. For an Ll -level entangled link, the 

hop distance between quantum nodes x  and y  is 12l- , and each Ll -level entangled link 

( ),E x y  can be established only with a given probability, ( )( )L0 Pr , 1
l
E x y< £ , which de-

pends on the properties of the actual overlay quantum network. As the level of entanglement 

increases, the number of spanned nodes also increases, which decreases the probability of the 

existence of a higher-level entangled link in the network. Note that each quantum node can have 

an arbitrary number of entangled node contacts with an arbitrary level of entanglement between 

them. The intermediate nodes between x  and y  are referred to as quantum repeater nodes and 

participate only in the process of entanglement distribution from x  to y . 
In an entangled quantum network with heterogeneous entanglement levels, finding the 

shortest path between arbitrary quantum nodes for the level of entanglement is a crucial task to 

transmit a message between the nodes in as few steps as possible. Since in practical scenarios 

there is no global knowledge available about the nodes or about the properties of the entangled 

links, the routing has to be performed in a decentralized manner. In particular, our decentralized 

routing uses only local knowledge about the nodes and their neighbors and their shared level of 

entanglement. 

 Here we show that the probability that a specific level of entanglement exists between the 

quantum nodes in the entangled overlay quantum network N  is proportional to the L1 distance 

of the nodes in an n -sized base-graph. We have found that the probability distribution of the 
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entangled links can be described by an inverse k -power distribution, where k  is the dimension 

of the base-graph kG , making it possible to achieve an ( )2logn  decentralized routing in an 

entangled overlay quantum network. A k -dimensional base-graph contains all quantum nodes 

and entangled links of the overlay quantum network via a set of nodes and edges such that each 

link preserves the level of entanglement and corresponding probabilities. Specifically, the con-

struction of the base-graph of an entangled overlay network is a challenge, since in a practical 

decentralized networking scenario, there is no global knowledge about the exact local positions of 

the nodes or other coordinates. Particularly, mapping from the entangled overlay quantum net-

work to a base-graph has to be achieved without revealing any routing-related information by 

security assumptions.  It is necessary to embed the entangled overlay quantum network with the 

probabilistic entangled links onto a simple base-graph if we want to achieve an efficient decen-

tralized routing. As we show by utilizing sophisticated mathematical tools, the problem of em-

bedding can be reduced to a statistical estimation task, and thus the base-graph can be prepared 

for the decentralized routing. Therefore, the shortest path in the heterogeneous entanglement 

levels of the quantum network can be determined by the L1 metric in the base-graph. Precisely, 

since the probability of a high-level entangled link between the nodes is lower than the probabil-

ity of a low-level entanglement, we can assign positions to the quantum nodes in the base-graph 

according to the a posteriori distribution of the positions.  

 We show that the proposed method can be applied for an arbitrary-sized entangled quantum 

network, and by utilizing entangled links, our decentralized routing does not require transmis-

sion of any routing-related information in the network. We also reveal the diameter bounds of a 

multi-level entangled quantum network, where the diameter refers to the maximum value of the 

shortest path (the total number of entangled links in a path) between a source and a target 

quantum node.  

 This paper is organized as follows. In Section 2 the proposed decentralized routing approach 

is discussed. In Section 3 the diameter bounds are derived. Finally, Section 4 concludes the re-

sults. Supplemental information is included in the Appendix. 
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2  Decentralized Routing Algorithm 

Let us formalize our statements in a strict mathematical manner. Let V  refer to the nodes of an 

overlay entangled quantum network N , which consists of a transmitter node A VÎ , a receiver 

node B VÎ , and quantum repeater nodes iR VÎ , 1, ,i q=  . Let { }jE E= , 1, ,j m=   

refer to a set of edges between the nodes of V , where each jE  identifies an Ll -level entangle-

ment, 1, ,l r=  , between quantum nodes jx  and jy  of edge jE , respectively.  

An ( ),N V E=  overlay quantum repeater network consists of several single-hop and multi-hop 

entangled nodes, such that the single-hop entangled nodes are directly connected through an 1L -

level entanglement, while the multi-hop entangled nodes communicate through Ll -level entan-

glement. The ( )
L

,
l

d x y  hop distance in N  for the Ll -level entangled nodes ,x y VÎ  is denoted 

by 

( ) 1
L

, 2
l

ld x y -= ,                                                   (1) 

with ( )
L

, 1
l

d x y -  intermediate nodes between the nodes x  and y . The probability that an Ll -

level entangled link ( ),E x y  exists between ,x y VÎ  is ( )( )LPr ,
l
E x y , which depends on the 

actual network. 

An entangled overlay quantum network N  is illustrated in Fig. 1. The network consists of sin-

gle-hop entangled nodes (depicted by grey nodes) and multi-hop entangled nodes (depicted by 

blue and green nodes) connected by edges. The single-hop entangled nodes are directly con-

nected through an 1L -level entanglement, while the multi-hop entangled nodes communicate 

with each other through 2L  and 3L -level entanglement. Each entanglement level exists with a 

given probability. 
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Figure 1. An entangled overlay quantum network ( ),N V E=  with heterogeneous entangle-

ment levels. The network consists of single-hop entangled (grey) nodes with 1L -level entangle-

ment connection, and multi-hop entangled (blue, green) nodes with 2L  and 3L -level entangled 

links. An Ll -level, 1,2, 3l = , entangled link between nodes ,x y VÎ  is established with prob-

ability ( )( )LPr ,
l
E x y . The overlay network consists of q  quantum repeater nodes iR VÎ , 

1, ,i q=   between the transmitter (A) and the receiver (B) nodes. The Ll -level entangled 

nodes consist of ( )
L

, 1
l

d x y -  intermediate quantum nodes, as depicted by the dashed lines. 

 

2.1   Base-Graph Construction 

The base-graph of an entangled quantum network N  is determined as follows. Let V  be the set 

of nodes of the overlay quantum network. Then let kG  be the k -dimensional, n -sized finite 

square-lattice base-graph [1, 9-10, 12-14], with position ( )xf  assigned to an overlay quantum 

network node x VÎ , where : kV Gf   is a mapping function which achieves the mapping 
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from V  onto kG  [10]. Specifically, for two network nodes ,x y VÎ , the L1 metric in kG  is 

( ) ( )( ),d x yf f , ( ) ( ),x j kf = , ( ) ( ),y m of =  and is defined as 

( ) ( )( ), , ,d j k m o m j o k= - + - .                                   (2) 

The kG  base-graph contains all entangled contacts of all x VÎ . The probability that ( )xf  

and ( )yf  are connected through an Ll -level entanglement in kG  is  

( ) ( )( )
( ) ( )( )

( ) ( ),

,
, ,

k

x y
n

d x y
p x y c

H f f

f f
f f

-

= +                             (3) 

where ( ) ( )( ),n z
H d x zf f= å  is a normalizing term [9-10], which is taken over all entangled 

contacts of node ( )xf  in kG , while ( ) ( ),x ycf f  is a constant defined as 

( ) ( ) ( )( ) ( ) ( )( )
, L

,
Pr , ,

l

k

x y
n

d x y
c E x y

Hf f

f f
-

= -                                    (4) 

where ( )( )LPr ,
l
E x y  is the probability that nodes ,x y VÎ  are connected through an Ll -level 

entanglement in the overlay quantum network N .  

For an Ll -level entanglement between ( )xf  and ( )yf , ( ) ( )( ),d x yf f  in kG  is evaluated as 

( ) ( )( ) 1, 2ld x yf f -= .                                              (5) 

Our idea is that the ( )( )LPr ,
l i iE x y  probability of an Li -level entanglement connection be-

tween nodes ,i ix y VÎ  in the entangled overlay quantum network N  can be rephrased directly 

by the probability of ( ) ( )( ),i ip x yf f  in the k -dimensional base-graph kG  via the following 

distance connection:  

( ) ( )( ) ( ) 1
L

, , 2
l

l
i i i id x y d x yf f -= = .                                (6) 

Between the ( )f ⋅  configuration of positions of the quantum nodes in kG  and the set E  of the 

m  edges of the overlay network V , the following conditional probability can be defined: 

( ) ( ) ( )( )
( ) ( ),

1

,
Pr ,

i i

i

km
i i

x y
E n

d x y
E c

H f f

f f
f

-

=

= +                          (7) 
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where ,i ix y VÎ  are the quantum nodes connected via an entangled link iE  in the overlay net-

work N . As follows, the mapping kV G  holds the connectivity of V  via the unique position 

configurations ( ) ( ),i ix yf f  of the overlay nodes such that the probability of an edge in kG  

depends only on the distance ( ) ( )( ),i id x yf f  between ( ) ( ),i ix yf f  and the corresponding 

( )( )LPr ,
i i iE x y  in N . As follows from (7), to maximize ( )Pr E f  we have to determine those 

base-graph ( ) k
ix Gf Î  assignments for all i of overlay nodes ix VÎ  that minimize the product 

of the ( )d ⋅  distances in the base-graph kG . 

In particular, using stochastic optimization at a given set of m  edges E  of the overlay quantum 

network N , finding the positions ( ) ( ),i ix yf f , 1, ,i m=   in kG  can be approached straight-

forwardly by Bayes’ rule as 

( )
( ) ( )

( )
Pr Pr

Pr ,
Pr

E
E

E

f f
f =                                            (8) 

which characterizes the a posteriori distribution of configuration f  at a given set E . Therefore, 

the : kV Gf   mapping function which maximizes ( )Pr Ef  can be determined via a statisti-

cal estimation. For a candidate distribution ( )Pr f , ( )Pr Ef  can rewritten without loss of 

generality as 

 ( ) ( ) ( )
( ) ( )

Pr Pr
Pr ,

Pr Pr

E
E

E d
f

f f
f

f f f
=
ò

                                         (9) 

which clearly reveals that the determination of (9), specifically ( ) ( )Pr PrE d
f

f f fò , is also 

hard. To solve the problem, Markov chain–based techniques [10] can be utilized, allowing us to 

generate samples of f  that conform to a given ( )Pr f  candidate distribution (see Section S.1); 

this is convenient since we can determine the denominator of (9). These techniques require the 

definition of a proposal density function to stabilize the resulting Markov chain. This stabiliza-

tion is required to achieve (9) via the chain through a sequence of states. A proposal density 



 8

function ( )q r s  proposes a next state *s  given a state is . On the other hand, the stabilization 

procedure also requires the swapping [11, 14] of position information ( )ixf  and ( )iyf  between 

any two nodes ( ) ( ), k
i ix y Gf f Î  subject to some constraints. The swapping operation between 

two nodes does not change the physical-level connections. However, assuming a classical com-

munication channel for this purpose, the swapping would lead to serious security issues [11, 14], 

which are not an acceptable in our setting.  

As we prove here, by utilizing entangled links between nodes, our solution requires no transmis-

sion of information ( )ixf  and ( )iyf  between the nodes ,i ix y VÎ  of the overlay network for 

stabilization. Particularly, our stabilization procedure uses quantum teleportation between 

nodes, which does not require transmission of any routing-related information in the network, as 

follows.  

Let’s assume that quantum nodes ,i ix y VÎ  are selected for swapping from the entangled over-

lay network N , associated with kG  position information ( )ixf  and ( )iyf . Let ju  refer to the 

j -th neighbor quantum node of ix , { },i jx u EÎ  with position ( ) k
ju Gf Î , and let jv  identify 

the j -th neighbor quantum node of iy , { },i jy v EÎ  with position ( ) k
jv Gf Î . In the first 

phase, all neighbor nodes of ,i ix y  locally prepare the quantum systems ( )juf  and ( )jvf . 

Using the Ll -level entangled links between ju  and ix , jv  and iy , all neighbor quantum nodes 

teleport their local quantum system to ix  and iy . This is possible since all nodes of V  are con-

nected through an Ll -level entanglement in N , and therefore, an arbitrary neighbor node is at 

least connected through an 1L -level (direct) entanglement.  

Specifically, for j" , the neighbor node ju  teleports ( )juf  to ix , while all jv  teleports 

( )jvf  to iy , respectively. In the next step, for j"  the nodes ix  and iy  measure their states 

( )juf  and ( )jvf  via a local measurement M , which yields ( ) ( )j jM u uf f=  and 
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( ) ( )j jM v vf f= . Using the results of the local measurements, the two nodes ix  and iy  de-

termine the following quantities:  

( ) ( ) ( )( )
{ }

( ) ( )( )
{ }, ,

,
i j i j

i i i j i j
x u E y v E

x y x u y vz f f f f
Î Î

= - -  ,                     (10) 

and 

( ) ( ) ( )( )
{ }

( ) ( )( )
{ }, ,

,
i j i j

i i i j i j
x u E y v E

x y y u x vf f f f
Î Î

F = - -  .                     (11) 

In the final step, the two nodes ix  and iy  make a decision regarding their location information 

swapping.  

Particularly, if ( ) ( ), ,i i i ix y x yz ³ F , then nodes ,i ix y  perform the swapping operation, which 

yields ( ) ( )i iM y xf fº  at ix  and ( ) ( )i iM x yf fº  at iy , with unit probability 

( ) ( )( ), 1swap i ip x yf f = . If ( ) ( ), ,i i i ix y x yz < F , then nodes ,i ix y  swap their position informa-

tion only with probability ( ) ( )( ) ( ) ( ), , ,swap i i i i i ip x y x y x yf f z= F , which is also a possible 

scenario if the nodes ,i ix y  are uniformly selected at random [11].  

Applying the swapping procedure for all node pairs of V  provably stabilizes the chain since it 

leads to the convergence of the ( )f ⋅  positions to a state which allows us to perform efficient 

decentralized routing in the kG  base-graph, using the L1 metric.  

 

2.2   Routing in the Base-Graph 

The routing in the k -dimensional base-graph kG  is performed via a decentralized algorithm   

as follows. After we have determined the base-graph kG  of the entangled overlay quantum net-

work N , we can apply the L1 metric to find the shortest paths. Since the probability that two 

arbitrary entangled nodes ( ) ( ),x yf f  are connected through an Ll -level entanglement is 

( ) ( )( ),p x yf f  (see (3)), this probability distribution associated with the entangled connec-

tivity in kG  allows us to achieve efficient decentralized routing via   in the base-graph. Using 

the L1 distance function, a greedy routing (which always selects a neighbor node closest to the 
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destination node in terms of kG  distance function d  and does not select the same node twice) 

can be straightforwardly performed in kG  to find the shortest path from any quantum node to 

any other quantum node, in ( )2logn  steps on average (see Section S.1), where n  is the size of 

the network of kG . Note that the nodes know only their local links (neighbor nodes) and the 

target position. It also allows us to avoid dead-end nodes (where the routing would stop) by 

some constraints on the degrees of the nodes, which can be directly satisfied through the settings 

of the overlay quantum network.  

The decentralized algorithm   in the k -dimensional n -sized base-graph kG  is characterized by 

the following diameter bounds. In our setting, the ( )kD G  diameter of kG  refers to the maxi-

mum value of the shortest path (total number of edges on a path) between any pair of mapped 

nodes in kG . Then, for the ( )D   minimal number of steps required by   follows that 

( ) ( )kD D G³ . We show that for any kG  with ( ) ( )( ),p x yf f  (see (3)) probability for the 

entangled links between an arbitrary ( ) ( ), kx y Gf f Î , the relation ( ) ( )2logD n£   holds. 

In Section S.2 we prove that for any kG , the relation ( ) ( ) ( )2logkD D G n³ £   holds. 

In Fig. 2, a kG , 2k =  dimensional base-graph is depicted with entangled nodes ( ) 2A Gf Î , 

( ) 2
iR Gf Î , 1,2, 3i = , where A VÎ  is a transmitter node in the overlay quantum network 

V , while iR VÎ  are quantum repeater nodes in N . The nodes are connected through an Li -

level entanglement in N  with probability ( )LPr ,
i iA R . In the base-graph 2G , the mapped nodes 

( )Af , ( )iRf  are connected with probability ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )

2

2

,
,

,
, ,i

i
zz

d A R
i A R

d A R
p A R c

f f
f f

f f
f f

-

-
= +

å
 

where ( ) ( )( ) 1, 2iid A Rf f -= . 
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Figure 2. A 2G  base-graph of an overlay quantum network N , with entangled nodes ( )Af , 

( )iRf , 1,2, 3i = , where A VÎ  is a transmitter node in the overlay quantum network N , 

while iR VÎ  are quantum repeater nodes in N . In N , nodes A  and 1R  are connected through 

1L -level entanglement with probability ( )
1L 1Pr ,A R , nodes A  and 2R  are connected via 2L -

level entanglement with probability ( )
2L 2Pr ,A R , while A  and 3R  have an 3L -level entangle-

ment connection with probability ( )
3L 3Pr ,A R . The probability that nodes are connected in 2G  

is ( ) ( )( )1,p A Rf f , ( ) ( )( )2,p A Rf f , and ( ) ( )( )3,p A Rf f . 

 

3  Diameter Bounds  

Here we derive the diameter bounds for a 2k =  dimensional n -size base-graph 2G . The results 

can be extended for arbitrary dimensions. Let nB  be a box of size n n´  that contains 2G . Let 
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iS  be a subsquare of nB  of side length ng , where 4 1k g< < , and let subdivide each iS  into 

smaller sub-subsquares ikS  of side length 2
n g  [12]. Let 1A  be the event that there exists at least 

two subsquares iS  and jS  in nB  such that there is no exists edge between them. Similarly, let 

2A  identify the event that there exists at one iS  in nB  such that there are two sub-subsquares 

ikS  in iS  which are not connected by edge. In particular, assuming a 2G  for which 1A  is vio-

lated means that subsquares iS  and jS  are connected by at least one edge, thus without loss of 

generality, 

( ) ( )2
max2 1iD G D S£ + ,                                            (12) 

where ( )max iD S  identifies the largest diameter of the subsquares of side length ng . By similar 

assumptions, if 2A  is violated then exist edge between at least two sub-subsquares ikS  of any 

iS , therefore ( ) ( )2
max4 3ikD G D S£ + , where ( )max ikD S  is the largest diameter of the sub-

subsquares of side length 2
n g , respectively. As follows, in this case there exists a path of length 

( ) ( )2
max4 3ikD G D S£ +                                              (13) 

in nB  which connects any two mapped nodes ( ) ( ),x yf f  in 2G .  

A tessellation of a base-graph 2G  of an overlay quantum network N  for which these events are 

violated are illustrated in Fig. 3. The nB  box contains 2G , with subsquares iS , and sub-

subsquares ikS . The nodes are connected through 1 2L ,L  and 3L -level entanglement in N . 
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Figure 3. A tessellation of nB  of the base-graph 2G  of an overlay quantum network N  onto 

ng  side subsquare iS , and 2
ng  side sub-subsquare ikS , where 4 1k g< < . The nodes are 

connected through 1 2L ,L  and 3L -level entangled links in the overlay network, with source node 

A  and target node B . The points between ( )Af  and ( )Bf  refer to the repeater quantum 

nodes. 

 

4  Conclusions 

In this work we proposed a method to perform efficient decentralized routing in entangled quan-

tum networks. Our solution allows us to find the shortest path in multi-level entangled quantum 

networks using only local knowledge of the nodes, and in these network structures, the nodes are 

entangled through different entanglement levels. We showed that the entangled network struc-
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ture can be embedded onto a base-graph, keeping the probability distribution of the entangled 

links and allowing us to construct efficient decentralized routing. The results can be directly 

applied in practical quantum communications, experimental long-distance quantum key distribu-

tion, quantum repeater networks, future quantum internet, and other quantum networking sce-

narios.  
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Supplemental Information 

S.1  Base-graph Construction 

The Markov chain for the base-graph construction is defined as follows. Let 2f  be the ,i ix y -

swap of 1f , such that ( ) ( )1 2i ix yf f= , ( ) ( )1 2i iy xf f= , and ( ) ( )1 2i iz zf f=  for all 

,i i iz x y¹  [10]. Then let the Markov chain defined by transition matrix ( )1 2,T f f , as 

( ) ( ) ( )1 2 1 2 1 2, , ,T f f f f e f f= W , where 1 2f f¹ . If 2f  is the ,i ix y  swap of 1f , then 

( ) 11 2 2
, ,

n
nf f
æ æ öö÷÷ç ç ÷÷ç ç+ ÷÷ç ç ÷÷ç ç ÷÷ç çè è øø

W =  and ( ) ( )( ), 0i ix yf fW =  otherwise. The term ( )1 2,e f f  is defined as  

( )
( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )( )

1 1

2 2

1 1 ,

1 2

2 2 ,

,
, min 1, ,

,

i i

i
i i

k
i i x y

k
E E x y

i i x y

d x y c

d x y c

f f

f f

f f
e f f

f fÎ 

æ ö÷+ç ÷ç ÷ç= ÷ç ÷ç ÷ç ÷+ ÷çè ø
                     (S.1) 

where ( )E x y  refers to the edges connected to x VÎ  or y VÎ ; therefore, ( )1 2,e f f  can be 

determined via each node by only its local edge information. As one can readily check, the chain 

with ( )1 2,T f f  has ( )Pr Ef  (see (8)) as its stationary distribution.  

 

S.2  Routing Complexity 

In this section we prove the relation of ( ) ( )2logD n£   for our decentralized algorithm  , 

for an arbitrary k -dimensional n -size base-graph kG .  

Utilizing the tessellation of nB  for m  times results in end squares with side length m
ng , for 

which situation m  events, 1, , mA A , exist [12].  In this case, the resulting bound on the diame-

ter is 

( )2 22
mmD G ng+£ .                                             (S.2) 
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It can be verified that if ( )( ) 1log log log log log log 4 log logm n n k Kg g-= - + - - , where 

K  is a constant, and ( )
log log

4 log

K nm
k ng

g
-

= , the diameter bound is as 

( ) ( )2 log
C

D G n£ ,                                             (S.3) 

for some constant 0C > , which leads to ( ) ( )( )2lim Pr log 1
C

n
D G n

¥
£ = . Note that that the 

probability that an event iA  occurs (i.e., there is no edge between the i
ng  side subsquares) is 

bounded by ( ) ( )1
44Pr

i
Zn k

iA n e
g g
-

- -£ , where 0Z >  is a constant, while 1i
ng

-  refers to the 

large subsquare which is tessellated by the i
ng  side sub-subsquares, respectively. Thus, 

( ) ( )44
1Pr

m
Zn k

mA A mn e
g g- -  £ . 

To verify the upper bound ( ) ( )2logD n£  , we use the fact that for any ( ) 2x Gf Î , by 

theory ( ) ( )( )( )( ) ( ) ( ) ( )2

2

,
4 log 6

y G y x
d x y n

f f f
f f

-

Î ¹
- £å , from which the probability 

( ) ( )( )Pr y xf f  that from node ( )xf  a given ( )yf  is selected is lower bounded by 

( ) ( )( ) ( ) ( )( )
( )

2

4 log 6
Pr

d x y

n
y x

f f
f f

-
-

³ . Then let je , log log , logj n né ùÎ ë û , be an event that from node 

( )xf  a set j  of nodes can be selected by  , such that j  are within L1 distance 2j  from the 

target node ( )Bf . In set j , each node is within the L1 distance 1 22 2 2j j j+ ++ <  of ( )xf . 

After some calculations, the probability that an event je  occurs is ( ) ( )
1

64 log 6
Pr j n
e ³ . There-

fore, if the current node is ( )xf , and ( ) ( )( ) 12 , 2j jd x Bf f +< £  holds for the L1 distance, 

then the number of steps are upper bounded by the mean ( )jE X  of an geometric random vari-

able jX , ( ) ( ) ( )1
Pr

log
j

j e
E X n= =� .  

Since the number of such events is maximized in logn , it immediately follows that the total 

number of steps in 2G  is on average at most ( )2logn , thus 
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( ) ( ) ( )21
Pr

log log
je

D n n£ = � ,                                    (S.4) 

which holds for an arbitrary, k -dimensional n -size base-graph kG .  

 

S.3  Notations 

The notations of the manuscript are summarized in Table S.1. 

 

Table S.1. Summary of notations.  

Notation Description 

L1 Manhattan distance (L1 metric). 

l   Level of entanglement.  

F  Fidelity of entanglement.  

Ll  
An l -level entangled link. For an Ll  link, the hop-distance 

is 12l- . 

( )
L

,
l

d x y  
Hop-distance of an l -level entangled link between nodes x  

and y .  

1L  1L -level (direct) entanglement,  ( )
1

0
L

, 2 1d x y = = . 

2L  2L -level entanglement, ( )
2

1
L

, 2 2d x y = = . 

3L  3L -level entanglement, ( )
3

2
L

, 2 4d x y = = . 

( ),E x y  
An edge between quantum nodes x  and y , refers to an Ll -

level entangled link. 

( )( )LPr ,
l
E x y  

Probability of existence of an entangled link ( ),E x y , 

( )( )L0 Pr , 1
l
E x y< £ . 

N  
Overlay quantum network, ( ),N V E= , where V  is the 

set of nodes, E  is the set of edges. 
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V  Set of nodes of N . 

E  Set of edges of N . 

kG  An n -size, k -dimensional base-graph. 

n  Size of base-graph kG . 

k   Dimension of base-graph kG . 

A  Transmitter node, A VÎ . 

B  Receiver node, B VÎ . 

iR  A repeater node in V , iR VÎ . 

jE  
Identifies an Ll -level entanglement, 1, ,l r=  , between 

quantum nodes jx  and jy . 

{ }jE E=  
Let { }jE E= , 1, ,j m=   refer to a set of edges between 

the nodes of V . 

( )xf  

Position assigned to an overlay quantum network node 

x VÎ  in a k -dimensional, n -sized finite square-lattice 

base-graph kG . 

: kV Gf   
Mapping function that achieves the mapping from V  onto 

kG . 

( ) ( )( ),d x yf f  

L1 distance between ( )xf  and ( )yf  in kG . For  

( ) ( ),x j kf = , ( ) ( ),y m of =  evaluated as 

( ) ( )( ), , ,d j k m o m j o k= - + - . 

( ) ( )( ),p x yf f  
The probability that ( )xf  and ( )yf  are connected 

through an Ll -level entanglement in kG . 

nH  Normalizing term, defined as ( ) ( )( ),n z
H d x zf f= å . 

( ) ( ),x ycf f  Constant, defined as 
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( ) ( ) ( )( ) ( ) ( )( )
, L

,
Pr , ,

l

k

x y
n

d x y
c E x y

Hf f

f f
-

= -  

where ( )( )LPr ,
l
E x y  is the probability that nodes ,x y VÎ  

are connected through an Ll -level entanglement in the 

overlay quantum network N . 

( )Pr E f  

Conditional probability between the ( )f ⋅  configuration of 

positions of the quantum nodes in kG  and the set E  of the 

m  edges of the overlay network V . 

( )Pr Ef  Posteriori distribution of configuration f  at a given set E . 

( )Pr f  Candidate distribution. 

( )q r s  
Proposal density function to stabilize the Markov chain, 

proposes a next state *s  given a state is . 

ju  
The j -th neighbor quantum node of ix , { },i jx u EÎ  with 

base-graph position ( ) k
ju Gf Î . 

jv  
The j -th neighbor quantum node of iy , { },i jy v EÎ  with 

base-graph position ( ) k
jv Gf Î  

( )juf , ( )jvf  
Quantum systems, prepared locally by all ju  and jv  

neighbor nodes of ,i ix y . 

M  
Local measurement, which yields ( ) ( )j jM u uf f=  and 

( ) ( )j jM v vf f= . 

( ),i ix yz  
Parameter for the evaluation of the results of the local 

measurements of two nodes ix  and iy . 

( ),i ix yF  
Parameter for the evaluation of the results of the local 

measurements of two nodes ix  and iy . 
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swap 

Swap operation. The ,i ix y -swap of 1f , such that 

( ) ( )1 2i ix yf f= , ( ) ( )1 2i iy xf f= , and ( ) ( )1 2i iz zf f=  

for all ,i i iz x y¹ . 

( ) ( )( ),swap i ip x yf f  
Swapping probability. Nodes ,i ix y  swap their position in-

formation with this probability. 

  
Decentralized algorithm   in the k -dimensional n -sized 

base-graph kG . 

( )kD G  

Diameter of kG . Refers to the maximum value of the short-

est path (total number of edges on a path) between any 

pair of mapped nodes in kG . 

( )D   
Minimal number of steps required by   to find the short-

est path. 

nB  Box of size n n´ . 

iS  Subsquare of nB  of side length ng , where 4 1k g< < . 

ikS  
Sub-subsquares of side length 2

ng , yielded from the subdi-

vision of a subsquare iS  into smaller units. 

1A  
Event that there exists at least two subsquares iS  and jS  

in nB  such that there is no exists edge between them. 

2A  

Event that there exists at one iS  in nB  such that there are 

two sub-subsquares ikS  in iS  which are not connected by 

edge. 

( )max iD S  Largest diameter of the iS  subsquares of side length ng . 

( )max ikD S  
The largest diameter of the ikS  sub-subsquares of side 

length 2
ng . 
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( )1 2,T f f  

Transition matrix, where 2f  is the ,i ix y -swap of 1f , such 

that ( ) ( )1 2i ix yf f= , ( ) ( )1 2i iy xf f= , and 

( ) ( )1 2i iz zf f=  for all ,i i iz x y¹ . 

( )1 2,f fW  

Parameter for the definition of Markov chain, defined as 

( ) 11 2 2
, ,

n
nf f
æ æ öö÷÷ç ç ÷÷ç ç+ ÷÷ç ç ÷÷ç ç ÷÷ç çè è øø

W = where n  is the size of the k -

dimensional base-graph kG .   

( )1 2,e f f  Parameter for the definition of Markov chain. 

( )E x y  Edges connected to x VÎ  or y VÎ . 

m  

Iteration step. Utilizing the tessellation of nB  for m  times 

results in end squares with side length m
ng , for which 

situation m  events, 1, , mA A  exist. 

C , Z  Constants, 0C > , 0Z > . 

je  Event. 

( )Pr je  Probability that an event je  occurs. 

jX  Geometric random variable. 

( )jE X  

Mean ( )jE X  of an geometric random variable jX , evalu-

ated as ( ) ( ) ( )1
Pr

log
j

j e
E X n= =� , where n  is the size of 

the k -dimensional base-graph kG . 

 
  

 


