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I. INTRODUCTION

Secure two-party quantum computation, or 2PQC, in-
volves the computation of a function by two distrustful
parties using a quantum computer and was first examined
in [1] for a quantum honest-but-curious adversaries (called
specious) and later made secure against more malicious ad-
versaries in [2]. The latter protocol, did not use any of the
standard boosting classical techniques, but instead used a
stepwise quantum authentication protocol, where two-ways
online quantum communication was required. Both proto-
cols use extra classical cryptographic primitives, which in
the case of the malicious [2] is a full actively secure classical
two-party computation primitive.

The use of classical techniques for boosting security (such
as Cut-and-Choose) for quantum protocols is complicated
not only because specific care is needed when defining
quantum analogues but also for technical reasons since the
rewinding method for proving security cannot be directly
used in quantum protocols (as demonstrated in [3] and [4]).

Our Contribution

1. We introduce a Quantum Computation Cut-and-
Choose (QC-CC) technique. Application of this tech-
nique is possible because of the decomposition of quan-
tum computation into a classical control and a quan-
tum resource in the MBQC models. Our precise secu-
rity analysis shows that, contrary to popular belief, the
security of the classical Cut-and-Choose is impacted by
quantum adversaries.

2. We give a protocol for 2PQC with classical input and
output secure against “quantum covert” adversaries,
similar to classical covert adversaries [5]. Our protocol,
built by applying QC-CC on [6] (secure against weak
specious adversaries), resembles the protocol by Yao
[7] (e.g. asymmetry between the two parties) and [8]
where Yao’s protocol is boosted using the classical Cut-
and-Choose.

3. A key obstruction when using classical techniques is
that in general rewinding the quantum adversary dur-
ing the simulation is not possible. There are two known
cases where rewinding can be used for quantum adver-
saries: Watrous’ oblivious rewinding [3] and Unruh’s
special rewinding [4]. We adapt and use both methods
to construct the simulators and prove the security of
our protocol. This is one of the few protocols in which
quantum rewinding is explicitly used and the only one,
to our knowledge, that combines both techniques for
a quantum/classical protocol, providing the first ex-
ample of how to apply them concretely outside of the
ZKPoK context.
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4. [1, 2] describe 2PQC protocols for symmetric parties.
Our protocol crucially differs: (i) There is only one-
way offline quantum communication between the par-
ties, (ii) only one party needs involved quantum tech-
nological abilities, the other only prepares offline single
qubits, (iii) minimal classical cryptographic primitives
are required (oblivious transfer and quantum-safe com-
mitments).

II. PRELIMINARIES AND SECURITY
DEFINITIONS

A. Standard Definitions of Security for 2PQC

We prove security using the real/ideal simulation paradigm
(stand-alone security): when considering a party as cor-
rupted, we will construct a simulator interacting with the
ideal functionality such that they are not able to detect that
they are not in fact interacting directly with a real world
honest party instead. The standard definition of security
means that the simulated and real states are exponentially
close and so indistinguishable for the malicious adversary.

We also introduce a new adversarial model for quantum
protocols, based on the covert adversaries in [5]. The quan-
tum covert adversaries are also able to deviate arbitrarily
from the protocol. The difference with malicious adversaries
is that when they cheat they are caught with high probabil-
ity but not necessarily exponentially close to 1. This models
real world situations where getting caught might have dire
consequences for the parties, eg. financial repercussions used
as a deterrent against cheating.

Another property which a quantum protocol may satisfy
is verifiability. This intuitively means that the probability of
receiving a corrupted output without aborting is negligible.

During our protocol we will use bit commitment and 1-
out-of-2 oblivious transfer (OT).

Bit commitment consists of two phases, Commit and Re-
veal, such that after the Commit the receiver has no informa-
tion about the value that has been committed (hiding), while
during the Reveal the sender cannot reveal a value different
from the one committed previously (binding). Both these
properties can be either computationally or unconditionally
verified depending on the scheme (but not both uncondition-
ally). We suppose that all the commitments used verify the
strict binding property of [4].

A 1-out-of-2 oblivious transfer is a two party functionality
in which one party (P1 in our case) has two strings (x0, x1)
and the other (P2) has a bit b ∈ {0, 1}. At the end of the
protocol P2 recovers xb. P1 should not know which of the
strings P2 has chosen while P2 has no information about the
string they did not choose x1−b.

B. Verifiable Blind Quantum Computation

We use the MBQC [9] model, equivalent to the circuit
model as it is based on the gate teleportation principle.
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One starts with a large, generic entangled state (repre-
sented by a graph) and, by choosing suitable single qubit
measurements, can perform any quantum computation (cir-
cuit). The computation is fully characterised by the graph
and default measurement angles.

We will consider a client-server setting. The client (P1)
can prepare single qubits while the server (P2) can perform
any general quantum computation. The client sends qubits
in the |+〉 state and the server entangles them according to a
computation graph with controlled−Z gates between qubits
corresponding to adjacent vertices on the graph, resulting
in a graph state [10]. The computation is defined by a de-
fault measurement angle φi (depending only on the desired
computation). It is carried out by having the server mea-
sure single qubits. The actual angle of each measurement
depends on φi and the outcomes of previous measurements.
The client performs these classical calculations to adjust the
angle and therefore the server returns to the client the result
of each measurement [11].

The computation can be totally hidden from the server:
if instead of sending |+〉 states the client chooses at ran-

dom and sends |+θ〉 = 1/
√

2(|0〉 + eiθ |1〉) with θ ∈ {i ·
π/8}i∈{0,...,7} then measuring the qubits in a similarly ro-
tated basis has the same result as the initial non-rotated
computation. By keeping the angle hidden, the server is
blind as to what computation is being performed. To en-
sure that no information is leaked from the measurement
outcome, we add another parameter ri for each qubit, which
One-Time-Pads the measurement outcome. The client sends
rotated qubits (to become the resource state once entangled)
and then guides the computation with a set of classical in-
structions. This in turn leads to the desired blind computa-
tion. This idea was formalised in the universal blind quantum
computation (UBQC) protocol in [11].

In UBQC the server is not forced to follow the instruc-
tions and the client cannot verify if the computation is done
correctly. This can be achieved by including trap qubits at
positions unknown to the server. These are isolated qubits
that do not affect the computation and have a deterministic
outcome if measured in the correct basis. They can therefore
be used as traps: a client can easily detect if one of them has
been measured incorrectly but the server is ignorant of their
position in the graph. The result is the Verifiable Universal
Blind Quantum Computation Protocol (VUBQC) of [12].

Theorem 1 (Verifiability of VUBQC, taken from [12]). The
VUBQC Protocol is ε2-verifiable for the Client for any ε2.

III. QUANTUM REWINDING

Classically the simulator runs the adversary internally and
rewinds it by having black box access to the next message
function. The simulator has to save all messages so that it
can send them again later to get a potentially different reply
(rewinding), which is impossible in the quantum setting due
to no-cloning. We present two techniques given in [3] and
[4] which achieve a similar result, with different constraints,
show that they are applicable for the simulators of our proto-
col and calculate the success probability for both cases (see
full version of the paper [13]).

Watrous’ Oblivious Quantum Rewinding Lemma 8
from [3] states that rewinding is possible if the probability

that the simulation is successful is non-negligible and inde-
pendent of the internal state of this adversary. Rewinding
gives a state ε-close to that of a successful simulation for any
exponentially small ε with polynomially many rewinds.

Unruh’s Special Quantum Rewinding Watrous’
lemma only ensures that the simulation is successful, but
no information is kept between two rewinds (hence oblivious
rewinding). In the simulator for covert client we will need
two transcripts in order to recover their input (otherwise se-
cret), so another type of rewinding is necessary.

Let Π be a protocol between P1, with input (x,w), and
P2, with input x and output in {0, 1}, with three messages:
commitment com by P1, challenge ch sampled uniformly at
random by P2 from a set Cx, and response resp by P1. P2 ac-
cepts (outputs 0) by a deterministic poly-time computation
on (x, com, ch, resp).

Rewinding can be used in such protocol by satisfying two
extra conditions : strict soundness and special soundness.
Strict soundness means that there is a unique classical re-
sponse to each challenge. Special soundness means that,
given two different accepting transcripts, the simulator can
recover the witness w, supposed to be secret.

IV. THE QUANTUM CUT-AND-CHOOSE
TECHNIQUE

The Cut-and-Choose method is a standard technique to
boost a protocol secure against honest-but-curious to being
secure against malicious adversaries.

The client creates s copies of the graph and the server
chooses which ones (the check graphs) they will check for
consistency. If the checks pass and additional precautions
are taken, the server is confident that with high probabil-
ity the remaining graphs (the evaluation graphs) were also
constructed correctly and can be used for the computation.
Here we will have s graphs in total, s − 1 check graphs and
1 evaluation graph.

We extend this technique to quantum computations. We
show how to verify quantum states using Quantum-State-
Preparation Cut-and-Choose. This ensures that the resource
state for the quantum computation in VBQC is constructed
correctly. Secondly, we define Classical Instructions Cut-
and-Choose, using the classical Cut-and-Choose to verify
that the (classical) instructions for the computation are cor-
rect. Finally, we combine the two to get Quantum Compu-
tation Cut-and-Choose.

Quantum State Preparation Cut-and-Choose
(QSP-CC) This functionality allows the receiver to test
that a state |ψα〉 was prepared correctly, up to a certain
probability, without the sender revealing its classical de-
scription. The client sends s states along with commitments
to their classical descriptions. The server chooses one of
them (α) and the client reveals the commitments for all
i 6= α. The server measures the states i 6= α according to
the decommitted values and verifies that they are correct.

The state at the end is 1√
s
-close to the correctly-prepared

one. Note that if we used more than 1 evaluation graphs (as
needed for boosting the success probability), the probability
of successful cheating does not scale linearly with parallel
repetitions of QSP-CC due to coherent (entangled) attacks.

Classical Instructions Cut-and-Choose (CI-CC) To
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perform the VBQC protocol, even if the resource state is
correct, one needs to ensure that the classical instructions
are also correct.

To achieve this, the sender commits to the classical instruc-
tions for all states after sending the qubits to the receiver.
When the commitments are opened, the receiver can deter-
ministically decide if the instructions are correct (w.r.t. the
classical description of the state). Intuitively we expect that
such a classical Cut-and-Choose has a 1

s probability of failure

but it is in fact also 1√
s
, due to the special rewinding of [4].

Quantum Computation Cut-and-Choose (QC-CC)
The receiver can use the remaining committed instructions
to drive the computation by asking the sender to open the in-
structions corresponding to the measurement outcomes. By
combining CI-CC with QSP-CC and using the commitments
during the (quantum) computation, the server knows (with
high probability) that they have been asked to perform the
correct quantum computation.

From Protocol QSP-CC, the state is 1√
s
-close to the ideal

state. From Protocol CI-CC, the instructions are constructed
correctly up to probability 1√

s
. It follows that the computa-

tion is performed correctly up to probability O( 1√
s
).

The proof of security requires the simulator to rewind the
simulation using Unruh’s special rewinding technique in or-
der to extract the secret parameters of the client (the de-
scription and instructions of the evaluation graph), which
results in the quadratic cost for the security. This protocol
follows the (com, ch, resp) structure of [4] (com corresponds
to sending commitments, ch is the server choosing the eval-
uation graph and resp is the revealing of commitments). It
also verifies strict and special soundness (the only acceptable
response is to open the correct commitments and given two
transcripts we can recover the secret), therefore the use of
rewinding is justified.

This provides an example where proving security against
a quantum adversary is hard, even for a classical functional-
ity. The part of the protocol that needs rewinding is entirely
classical (in happens after sending the qubits) and the same
proof (and extra cost) is necessary even for a fully classical
CC protocol (with a single evaluation graph). It is not suffi-
cient to use cryptographic primitives resistant against quan-
tum computers (eg. based on LWE), but proof techniques
(and security parameters) should also be modified.

V. THE 2PQC PROTOCOL

High-level overview P1 and P2 have already chosen a
VUBQC graph computing the function fault-tolerantly. P1

chooses and commits to the randomness for the s versions
of the graph (the angles θ and the flips r) and also to all
the corresponding corrected measurements angles, the input
measurement angles for both parties, the decryption keys for
P2’s output and the positions of the traps among P2’s output
qubits.

For every input bit of P2, they perform a 1-out-of-2 OT at
the end of which P2 learns the measurement angles for their
input qubits for all graphs (doing the OTs before sending the
qubits is essential for the security proof).

They then perform a QC-CC protocol: the qubits of each
graph are the states, the commitments correspond to the
descriptions of the states and the instructions, they choose

the evaluation graph with a coin-tossing protocol, P1 reveals
the commitments of check circuits and P2 verifies them as
well as the states.

Then they perform the evaluation with the VUBQC proto-
col with P1 decommitting to the instructions (measurement
angles).

At the end they perform a simple key-exchange protocol
so that P2 may decrypt their output.

Theorem 2 (Correctness). If both parties are honest and
follow the steps of the protocol then the protocol is correct.

Proof Sketch. The parties are honest, all the checks pass and
there is no abort. The evaluation is equivalent to the normal
VUBQC, with the server keeping part of the output. The last
step of the protocol allows P2 to decrypt it. The correctness
directly follows from the correctness of VUBQC.

Lemma 1 (ε-verifiability for the client). The QYao 2PQC
Protocol is ε2-verifiable for P1, for the same ε2 as the
VUBQC Protocol.

Proof Sketch. If P1 is honest and P2 malicious, the client gen-
erates correct graphs and commitments. The commitments
that are opened do not reveal anything about the evaluation
graph and the subsequent evaluation follows exactly as in
the VUBQC. This protocol thus inherits the verifiability of
VUBQC.

Theorem 3. Let s the number of graphs constructed as part
of the CC. If the OT is ε2-private against malicious ad-
versaries, the commitments are perfectly hiding and binding
and the protocol is ε2-verifiable for P1, then it is ε2-private
against malicious P2 and 1√

s
-private against covert P1.

Proof Sketch.
The simulator for adversarial P1 is very similar to the one

in the proof for the QC-CC Protocol: it obtains one set of
values form a first run (runs as usual until P1 reveals the
commitments) then rewinds the adversary to get a second set
and recovers the secret parameters of the adversary which it
then sends to the ideal functionality, thus getting the ideal
output. The simulator runs the evaluation graph with a ran-
dom input, encrypts the ideal output using the correct keys
(which he knows because of the rewind) and returns it to the
adversary.

The simulator for adversarial P2 relies on the construction
of a graph which has deterministic output (this graph is in-
distinguishable from a correct graph because of the UBQC
construction). The simulator recovers the adversary’s in-
put with the OTs (we work in an OT-hybrid model, during
simulation the simulator replaces the OT ideal functional-
ity and receives the inputs in its place) and sends it to the
ideal functionality, from which P2’s ideal output is obtained.
It then constructs a graph which always produces this out-
put and hides it among the remaining s − 1 graphs, which
are constructed correctly. The simulator biases the choice
of evaluation graph by rewinding the coin-toss so that this
special graph is chosen (since no information is kept between
rewinds, which is used only to pick the fake graph, and the
probability of success of the rewinding is 1

s , independent of
the internal state of the adversary, we can use the oblivious
quantum rewind technique from [3]). The checks pass and
P2 evaluates the fake graph and gets the correct output.
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