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Abstract

Quantum entanglement is a fundamental resource in quantum information processing and
its generation, manipulation and distribution between distant parties are all key challenges in
the pursuit of global quantum communications. In this context, high-dimensional encoding has
been shown to improve robustness and channel capacities in secure quantum communications.
The transmission of genuine high-dimensional entanglement under real-world atmospheric link
conditions, however, is an ongoing experimental challenge.

Here, we give an overview of our efforts towards implementing high-dimensional quantum
communication protocols in long-distance free-space links. We report on a proof-of-concept
experiment in which we, for the first time, use energy-time and polarization hyperentanglement
to transmit 4-dimensional entanglement via a 1.2-km-long intra-city free-space link. We discuss
how this approach can be adapted for high-dimensional free-space QKD and report on the
progress of ongoing experiments.

Distributing quantum entanglement between distant parties is a key challenge in the pursuit of a
worldwide quantum network. Quantum repeaters and optical satellite links have both been pro-
posed to overcome the distance limitations of fiber-based quantum networks. In order to test the
viability of a world spanning quantum satellite network, several proof-of-concept studies have al-
ready demonstrated high-fidelity transmission of photonic entanglement via terrestrial long-distance
free-space links [1,2]. However, until recently entanglement was encoded in the polarization degree
of freedom (DOF), thus limiting the accessible state space to two dimensions.

High-dimensional entanglement can yield significant benefits in the implementation of advanced
quantum information processing protocols, such as resilient encoding schemes for quantum commu-
nications with increased channel capacity. Energy-time entanglement, which naturally arises in the
process of spontaneous parametric down-conversion, is an established photonic DOF; it is routinely
used for the distribution of entanglement in fiber-based quantum cryptography networks but has
only recently been considered as a viable option for atmospheric free-space quantum communica-
tions [3, 4]. The dimensionality can be further increased by exploiting simultaneous entanglement
in several DOF [5]. This so-called hyperentanglement has previously been used in various quantum
protocols, for example, in efficient purification schemes or hyper-entanglement-assisted Bell-state
measurements in a laboratory setting, but not yet been demonstrated outside a protected laboratory
environment.

phase
 plate

TTM

multi-axis mount

TTM

transmitter 
telescope

multi-axis mount

405 nm LD CCD

dichroic mirrormirror PBSwave plate interference filter lens

530 nm LD

ppKTP 

hyperentangled 
photon source

polarization / energy-time analyzer

SPAD

polarization
 controller

optical fiber 

classical 
communication link

780 nm

840 nm

Alice
Bob

GPS clock

GPS clock

coaxial cable
network cable

polarization /
energy-time
analyzer 

receiver module

Nikon 400mm f/2.8

B0

B1

A0
A1

transfer
setup

transfer
setup

Calcite

free-space link
over Vienna (1.2 km)

Figure 1: Sketch of the experimental setup. Energy-time/polarization hyperentangled photons were pro-
duced in a laboratory at IQOQI. The photons were distributed to Alice and Bob via a free-space
link and and optical single-mode fiber, respectively. Bob’s photons were collected using a telephoto
objective and guided to an energy-time or polarization analyzer. Alice’s and Bob’s measurement
modules featured an additional transfer setup that could be inserted for measurements in the
energy-time DOF.
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Figure 2: Experimental results. Two-photon correlation functions E(φ(Θ)) in the polarization (blue) and
energy-time (red) DOF as a function of the variable phase shift φ(Θ) introduced in Alice’s measure-
ment module. Almost no interference was observed when the energy-time to polarization transfer
setup was introduced in Alice’s detection module only, thus excluding single-photon energy-time
coherence.

The experimental setup for our proof-of-concept field trial [6] is depicted in Fig. 1. A source of
hyperentangled photons and a detection module (Alice) were located at the Institute for Quantum
Optics and Quantum Information (IQOQI) and a receiver station (Bob) was located at the Univer-
sity of Natural Resources and Life Sciences (BOKU) in Vienna. The source produced polarization
entangled signal and idler photons via type-0 down-conversion in a Sagnac loop configuration. The
emission time of a photon pair is uncertain within the significantly longer coherence time of the
pump laser [7], thus resulting in an energy-time and polarization hyperentangled state:

|Ψ〉total = |Φ〉pol ⊗ |Φ〉e-t ∝ (|H〉A |H〉B + |V 〉A |V 〉B)⊗
∫

dt |t〉A |t〉B ,

where H and V denote horizontal and vertical polarization states and t denotes photon emission
time. The subscripts A and B label the respective spatial mode for Alice and Bob. Note that
our proof of concept demonstration focused on a two-dimensional subspace of the high-dimensional
energy-time space.

Photon A was guided to a local measurement module and photon B was guided to a transmitter
telescope on the roof of the institute. After transmission over the 1.2-km-long free-space link, the
photons were received by a telescope and detected in Bob’s measurement module. The measurement
modules for Alice and Bob each featured a polarization analyzer and an optional transfer setup that
coupled the energy-time DOF to the polarization DOF for the analysis of energy-time entanglement
[8].

We observe high-visibility two-photon interference in both polarization and energy-time subspaces
(see Fig. 2). The measured visibilities certify entanglement in both subspaces individually. Ad-
ditionally, they establish a lower bound on the Bell-state fidelity of the hyperentangled state of
0.9419, thus certifying genuine 4-dimensional entanglement [9] and 1.4671 ebits of entanglement of
formation.

We have thus successfully distributed hyperentangled photon pairs via an intra-city free-space link
under conditions of strong atmospheric turbulence. We experimentally certify entanglement in both
polarization and energy-time subspaces individually, and, for the first time, high-dimensional quan-
tum entanglement that has been transmitted via a real-world free-space link. While polarization-
entangled photons have been studied in numerous field trials with strong atmospheric turbulence,
our results clearly demonstrate the feasibility of also exploiting energy-time/polarization hyper-
entanglement under similar conditions.

The transmission of quantum information embedded in a genuine high-dimensional state space under
real-world link conditions is a first important step towards real-world implementations of advanced
quantum information processing protocols in the future. In particular, it enables the implementation
of high-dimensional QKD protocols over long-distance free-space links, and, ultimately, over satellite
links with only minor changes to existing mission proposals. Note, that the potential dimensionality
of energy-time entanglement is orders of magnitudes larger than certified in this first proof-of-
concept experiment. We hope that our results will motivate both further theoretical research into
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energy-time entanglement experiments conceivable at relativistic scenarios with satellite links, as
well as experimental research into the exploitation of hyperentanglement in long-distance free-space
quantum communications.
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