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1 Introduction

Practical quantum technologies, that would allow to build a large-scale quantum computer, have
been actively emerging. According to some experts in the area, it might take another 15-20 years
to be able to build one. Quantum computers will open new capabilities for the world. The list
of benefits is impressive. However, in the hands of malicious adversaries, quantum computer could
become a real threat. All of today’s standardised public-key cryptography could be efficiently broken
by large-scale quantum computers. It is vitally important to develop protection against this threat
now or in the near future. Quantum-resistant cryptographic algorithms should be developed and
implemented well before the arrival of quantum computer, otherwise it will be too late for many for
many areas in secure data protection and communication. As it is not yet feasible to use quantum-
based techniques, the solution is Post-Quantum Cryptography, classical cryptographic schemes that
would be quantum-resistant.

There are five major candidates for Post-Quantum Cryptography, namely, those are: Elliptic
Curve Isogeny-Based Cryptography, Hash-Based Signatures, Lattice-Based Cryptography, Code-
Based Systems, and Multivariate Polynomials-Based Systems. The schemes based on isogenies can
be viewed as a continuation of Elliptic Curve Cryptography, but as a Post-Quantum continuation.
The underlying hard problem for isogeny-based cryptography is given two isogenous supersingular
elliptic curves, find an isogeny between them. Currently no quantum algorithm is known for solving
this problem in general in less than exponential time. One of the main reasons why this problem
seems intractable for quantum computers is that the endomorphism ring for the elliptic curve is
non-commutative, which shields the problem against attacks like Shor’s algorithm. Compared to
other post-quantum proposals, this approach would be one of the easiest drop-in replacements for
the current cryptographic infrastructure. It also has the shortest key size. Besides that, it is based
on elliptic curves, hence it is something the cryptographic industrial world has already partially
seen and a lot of code can be reused.

The ciphersuite ideally has the following three major components: key agreement, public-key
encryption, and a digital signature. The first two components were the first isogeny-based cryp-
tographic schemes developed a few years ago. Several authentication-related protocols have been
developed. Recently, the digital signature has been derived and shown to be secure in the quantum
random oracle model.

2 Background

In this section, we will examine some background needed to understand the schemes.

We define E[m] to be the set of points in E, such that their order divides m. That is, if P ∈ E[m],
then mP = ∞ (identity point). We form our prime to be of the form p = `eAA · `

eB
B · f ± 1, where

`A and `B are small primes and f is a cofactor. Supersingular elliptic curves are defined over Fp2 .
When m divides the order of the curve, the group structure of E[m] is isomorphic to (Zm)2, hence
it needs two elements which are elliptic curve points to generate the entire E[m].

For our purposes, we will need E[`eAA ], which will have generators PA, QA and E[`eBB ], which will
have generators PB, QB. This can be extended beyond two-prime construction. In practice, we use
two and three prime constructions.



In general, a private key for user A is two scalar values mA, nA ∈ Z`
eA
A

(modulo `eAA ). These

values are used to compute an elliptic curve point KA = mAPA + nAQA. The point KA is used
as the generator of the kernel, denoted 〈KA〉, of the isogeny to compute the corresponding isogeny
φA itself. In practice, we do not explicitly state isogenies, but use their kernels to compute them.
Let EA be the resulting curve to which isogeny φA maps, that is φA : E → EA. EA is exactly the
public key corresponding to mA, nA.

Given an isogeny φ : E → E′, and a point aP1 + bP2, where P1, P2 ∈ E, we know that φ(a ·P1 +
b · P2) = φ(a · P1) + φ(b · P2) = a · φ(P1) + b · φ(P2) ∈ E′.

3 Key Agreement

For the key exchange scheme, provided in [1], we have two users A and B. The starting elliptic
curve E is public, as well as, the bases points {PA, QA} and {PB, QB}.

Key Generation. Alice does the following:

1. Randomly selects mA, nA ∈ Z`
eA
A

.

2. Computes KA = mAPA + nAQA.
3. Obtains EA using the kernel 〈KA〉 for the corresponding isogeny φA : E → EA.
4. Computes the values of PB and QB under her isogeny φA, namely φA(PB) and φA(QB). (These

are referred to as auxiliary points.)
5. Publishes EA and auxiliary points φA(PB) and φA(QB).

Bob does the same symmetrically generating private key mB, nB ∈ Z`
eB
B

, computing and pub-

lishing the corresponding public key: elliptic curve EB and auxiliary points φB(PA) and φB(QA).
Obtaining The Shared Key. Alice does the following:

1. Using her private key values mA, nA and Bob’s auxiliary points φB(PA), φB(QA), computes
mA ·φB(PA)+nA ·φB(QA). Note that mA ·φB(PA)+nA ·φB(QA) = φB(mA ·PA)+φB(nA ·QA) =
φB(mA · PA + nA · QA) = φB(KA). Hence it is the image of Alice’s kernel generator point in
Bob’s curve EB.

2. Using that value as the generator point for the kernel 〈φB(KA)〉, Alice maps EB → EAB.
3. Computes the j-invariant of EAB and uses that as a value of the common key.

Bob does the same symmetrically computing mB ·φA(PB)+nB ·φA(QB) = 〈φA(KB)〉 and using
it to obtain maps EA → EBA. Finally, he computes the j-invariant of EBA and uses that as a value
of the common key.

Note that the curves EAB and EBA are isomorphic, which means that they have the same
j-invariants. If two elliptic curves are isomorphic, they are considered to be the same curve.

Figure 1 summarises the above description.
Notice that this approach in the á la Diffie-Hellman style.

4 Public Key Encryption Scheme

The public key encryption scheme, based on supersingular isogenies, uses the same primitives as
the key exchange scheme and then the value of j-invariant of EAB is hashed and XOR’ed with the
message.

5 Digital Signature

We present the first general-purpose digital signature scheme based on supersingular elliptic curve
isogenies. The scheme is secure against quantum adversaries in the quantum random oracle model,
has small key sizes, and can take advantage of offline computation to sign efficiently. This scheme is
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Fig. 1: Key-exchange protocol using isogenies on supersingular curves.

an application of Unruh’s [2] construction of non-interactive zero-knowledge proofs to an interactive
zero-knowledge proof proposed in [1].

Zero-Knowledge Proof of Identity is shown in the following diagram.

E E/〈S〉

E/〈R〉 E/〈S,R〉

φ

ψ ψ′

φ′

The prover needs to prove that he possesses a secret φ, by computing ψ and providing E/〈R〉 and
E/〈S,R〉. When asked, provides either ψ,ψ′ or φ′, depending on the request by verifier. Hence, in
one round there is a 1/2 chance of cheating.

To obtain the digital signature, the signer must combine protocol and Unruh’s construction,
namely precompute the diagram for sufficient number of rounds. (usually twice the number of
quantum bits of security required). Then, the idea is as follows: the signer hashes the public knowl-
edge parts with the message and based on the output of the hash (as a bitstring of length that
corresponds to the number of rounds required), provides corresponding responses. All of that forms
the signature. More details can be found in [3].

6 Conclusion

The now complete set of cryptographic schemes shows that elliptic curves can be used as a protection
against quantum computers. The emergence of quantum computers will bring many benefits to the
society. However, in the hands of adversary they will become a threat to security. Thus, in order to
prevent that threat, we must start the transition to quantum-resistant cryptographic protocols as
soon as possible. In reality, the transition is a long and complicated process. Elliptic curve isogeny-
based schemes have the properties, which will allow the smoothest transition, compared to all the
other post-quantum candidates.
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