Gigahertz quantum signatures compatible with telecommunication technologies
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Modern cryptography covers much more than encryption of messages in order to keep them secret. Many other
cryptographic primitives exist, and it is important to consider how the security of these will be affected in a quantum
future. Digital Signatures are a widely used cryptographic primitive, found eg. in e-mail, e-commerce and digital
banking, and they form the basis for larger protocols. A signature o,, appended to a classical message m ensures the
authenticity and transferability of the message, whilst preventing forgery and repudiation. By employing quantum
mechanics to distribute the o, between recipients, unconditionally secure signature schemes can be constructed [1-4].

As the development of quantum security progresses, one must consider how to implement these schemes using
currently existing technology. To this end, we present a continuous-variable quantum signature scheme with an
emphasis on compatibility with existing telecommunication technologies. Our scheme is information-theoretically
secure against repudiation attacks and collective forging attacks, and can be implemented even when some QKD-
based signature protocols fail. We note that this is the first implemented continuous-variable quantum signature
scheme which does not require secure quantum channels between participants, though discrete-variable protocols
have been proposed and will soon be implemented [5].

In the simplest scenario, quantum digital signature (QDS) schemes involve three parties: Alice, who wishes to sign
m, and two recipients, Bob and Charlie. In a Distribution stage, Alice forms sequences of quantum states, p% and
P&, and sends them to Bob and Charlie, who measure the states and record their outcomes. The quantum states can
be thought of as Alice’s “public key”. Her corresponding “private key”, containing classical information about which
states she sent, is used as the signature ¢,,. Crucially, since a QDS scheme relies on quantum measurement, recipients
gain only partial information about o,,. Later, in an entirely classical Messaging stage Alice sends (m, o,,). Bob and
Charlie compare o, to their measurement results, and accept or reject m accordingly.

We have implemented our scheme by distributing an alphabet of phase-modulated coherent states over a 20 km
optical fiber, and have devised the corresponding security proof. In particular, we prove that a dishonest forger who
interacts with the quantum states cannot then declare some o}, which will be accepted by honest recipients, except
with negligible probability (security against forging). The probability of successful forgery is related to the smooth
min-entropy, which can be interpreted as the uncertainty that an eavesdropper has about an honest participant’s
measurement outcomes [6]. Hence, by estimating a lower bound for the smooth min-entropy we prove security of our
protocol, taking into account the finite-size effects intrinsic to signatures. As tighter bounds are developed these can
readily be incorporated. Furthermore, Bob’s and Charlie’s measurement outcomes are symmetrised with respect to
Alice, which makes it unlikely that a dishonest Alice can find some o/, which Bob will accept but that she can later
deny sending (security against repudiation).

Our system is built from telecom components running at a wavelength of 1553.33 nm and is completely fiber-
integrated. The coherent states are distributed by Alice at a rate of 10 GHz and are measured using homodyne
detection at Bob/Charlie. With our security proof the signature lengths are of the order of 10° to sign m with a
0.01% chance of failure, meaning a 1 bit message can be signed in 0.1 ms. This opens up the possibility of efficiently
distributing quantum signatures on a large scale with minimal installation cost, and makes our scheme competitive
in a landscape where both practicality and security are important.
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