

Measurement-device-independent quantum key distribution in practical scenarios

Chao Wang Advisor: Prof. Zheng-Fu Han email: wongchao@mail.ustc.edu.cn University of Science and Technology of China Key Laboratory of Quantum Information, CAS

Qcrypt 2017, Cambridge, UK

Sept. 19th, 2017

- 1. Motivations
- 2. Eliminate the calibration of reference frames
 - Reference-frame-independent MDI QKD
 - MDI QKD robust against environmental disturbances
- 3. Eliminate the source characterization
 - MDI QKD with uncharacterized encoding
- 4. Conclusions

Motivations: Practical Security

- Quantum key distribution (QKD) provides unconditional theoretical security;
- Real-life devices & systems compromise the practical security.

Motivations: MDI QKD protocol

Based on time-reversed entanglement protocol,

□ Immune to all possible measurement attacks,

Great balance between security and practicability,

□ Promising for star-type QKD networks.

Suffers from reference frame drift,

□ Still requires *trustworthy* quantum state preparation.

Phys. Rev. Lett. 108, 130503 (2012). Phys. Rev. Lett. 108, 130502 (2012).

Eliminate the calibration of reference frames

Eliminate the source characterization

Reference calibrations in MDI QKD

Polarization coding

Phys. Rev. A 82, 012304 (2010). New J. Phys. 15, 073001 (2013).

Phase coding

Quantum Inf. Process. 13, 1237 (2014).

Indistinguishable photons

Phys. Rev. Lett. 108, 130502 (2012).

- Compromise the practical security;
- Poor performance with inefficient calibration;
- Result in extra overheads.

"Device calibration impacts security of quantum key distribution." Phys. Rev. Lett. 107, 110501 (2011).

"An attack aimed at active phase compensation in one-way phase-encoded QKD systems." Eur. Phys. J. D 68, 1 (2014).

RFI MDI QKD

The Z basis states are well defined;
The X, Y basis states may vary with the reference drift β.

Z basis states: $|0\rangle$, $|1\rangle$ Robust!

X basis states: $\frac{1}{\sqrt{2}}(|0\rangle + e^{i\beta_{A(B)}}|1\rangle), \frac{1}{\sqrt{2}}(|0\rangle - e^{i\beta_{A(B)}}|1\rangle)$

Y basis states:
$$\frac{1}{\sqrt{2}}(|0\rangle + ie^{i\beta_{A(B)}}|1\rangle)$$
, $\frac{1}{\sqrt{2}}(|0\rangle - ie^{i\beta_{A(B)}}|1\rangle)$

$$C = (1 - 2e_{XX})^2 + (1 - 2e_{YY})^2 + (1 - 2e_{XY})^2 + (1 - 2e_{YX})^2$$

 \Box Does not change with β ;

□ Effective for bounding Eve's information.

A. Laing et al., Phys. Rev. A 82, 012304 (2010). Z-Q. Yin et al., Quantum Inf. Process. 13, 1237 (2014).

RFI MDI QKD

Wavelength-locking laser

- Center wavelength locked to 1542.38nm;
- Center wavelength accuracy: 0.0001 nm (10 MHz);
- Frequncy linewidth after wave chopping: 400MHz.

Fine-tuned timing system

- Pulse generating with a duration of 2.5 ns;
- Trigger signal for all devices;
- 10 ps resolution of adjustment.

Faraday-Michelson Interferometer

- Two time-bins with 24.5 ns delay;
- Arbitrary qubit preparation with high efficiency;
- Intrinsically stable to polarization fluctuations.

Electrical polarization controller

- Arbitrary polarization state transformation;
- Check the HOM dip every 30 min.

- Gate width: 2.5 ns;
- Average efficiency: 12%;
- Dark count rate: 9.79×10⁻⁶ per gate;
- Dead time: 5 μs .

C. Wang et al., Phys. Rev. Lett. 115, 160502 (2015).

Challenges ahead

The fiber birefringence can be affected and accumulated by environmental disturbances.

Polarization in field fibers

100% variation of Stokes in 20min.

JLT **10**, 552 (1992).

Lett. **15**, 882 (2003).

45km installed fiber in Tokyo

OE, 20, 16339 (2012)

LD: laser diode PM: phase modulator PG: pulse generation PS: polarization scrambling EPC: E-polarization controller FMI: Faraday-Michelson interferometer FM: Faraday mirror VOA: variable optical attenuator ATT: attenuator BS: beam splitter PBS: polarizing beam splitter Det: detector (Qasky)

- ✓ Frequency-locked lasers✓ Timing calibration
- \times Phase reference calibration \times Polarization calibration

- MDI QKD with minimum auxiliary equipment for calibration;
- Robust against extreme channel conditions and multi-user networks.

C. Wang *et al.*, Optica 4, 1016 (2017).

> Eliminate the calibration of reference frames

> Eliminate the source characterization

State preparation errors

- Inevitable imperfections of the preparation states.
- Compromise the practical security of MDI systems.

Existing solutions: Full characterizations required.

- Full characterization of the signal states
- Rejected-data analysis

K. Tamaki et al., Phys. Rev. A 90, 052314 (2014).Z. Tang et al., Phys. Rev. A 93, 042308 (2016).

Mismatched-basis statistics

□ Why mismatched-basis statistics can be used for security:

Projection states: BSM: $\begin{cases} |\phi^+\rangle = (|0\rangle|0\rangle + |1\rangle|1\rangle)\sqrt{2} \rightarrow \text{message: } 1\\ others \qquad \rightarrow \text{message: } 0 \end{cases}$

Encoding states: Z basis:
$$\begin{cases} 0:|0\rangle \\ 1:|1\rangle \end{cases}$$
 X basis:
$$\begin{cases} 2:|+\rangle = (|0\rangle + |1\rangle)/\sqrt{2} \\ 3:|-\rangle = (|0\rangle - |1\rangle)/\sqrt{2} \end{cases}$$

z x,y	0,0	0,1	1,0	1,1	2,2	2,3	3,2	3,3
0 1	1/2 1/2	1 0	1 0	1/2 1/2	1/2 1/2	1 0	1 0	1/2 1/2
z x,y	0,2	0,3	1,2	1,3	2,0	3,0	2,1	3,1
0 1	3/4 1/4							

In MDIQKD protocol, Alice and Bob know their encoding states, then above probability table guarantees the security of key bits.

Z. Yin et al., Phys. Rev. A 90, 052319 (2014).

Mismatched-basis statistics

□ Why mismatched-basis statistics can be used for security:

Projection states: BSM: $\begin{cases} |\phi^+\rangle = (|0\rangle|0\rangle + |1\rangle|1\rangle)\sqrt{2} \rightarrow \text{message: } 1\\ others \qquad \rightarrow \text{message: } 0 \end{cases}$

Encoding states: Z basis: $\begin{cases} 0: |0\rangle \\ 1: |1\rangle \end{cases}$ X basis: $\begin{cases} 0: |0\rangle \\ 1: |1\rangle \end{cases}$

z x,y	0,0	0,1	1,0	1,1	2,2	2,3	3,2	3,3
0 1	1/2 1/2	1 0	1 0	1/2 1/2	1/2 1/2	1 0	1 0	1/2 1/2
x,y	0,2	0,3	1,2	1,3	2,0	3,0	2,1	3,1
0	1/2 1/2	1 0	1 0	1/2 1/2	1/2 1/2	1 0	1 0	1/2 1/2

If Alice and Bob's devices are spoiled and send $|0\rangle$ for bits 0 and 2, $|1\rangle$ for bits 1 and 3, then above probability table *cannot* guarantee the security!

Z. Yin et al., Phys. Rev. A 90, 052319 (2014).

MDI QKD with uncharacterized encoding

Rebound the Phase error rate:

10 Uncharacterized-optimized Uncharacterized-fixed Original MDI Experimental data Final secure key rate(per pulse) 10⁻⁶ 10^{-7} 10^{-8} 10^{-9} 0 20 40 60 80 100 120 140 Transmission distance(km)

 $e_p \leq e_b + \varepsilon$

related to mismatched data

Realistic modulation error: 0.033 rad, can't even obtain a positive secure key rate with GLLP-SPF method.

- Preparation perfection or error characterization is no longer required;
- Only two-dimensional quantum states are demanded;
- Higher security with simpler constructions.

Z. Yin et al., Phys. Rev. A 90, 052319 (2014).

C. Wang et al., Optics Letters 41, 5596 (2016).

1. MDI QKD with encoding reference calibration eliminated

- 1) avoids potential loopholes from additional process;
- 2) mitigates expensive alignment overheads.

2. MDI QKD robust against environmental disturbances

- 1) further lessens the calibration requirements
- 2) stable in extreme channel conditions

3. MDI QKD with uncharacterized encoding

- 1) source error characterization no longer required
- 2) higher security with simpler constructions

Thank you for your attention

Our QKD group from USTC