
Security evaluation of quantum key distribution with weak basis-choice flaws

Shi-Hai Sun,1, ∗ Zhi-Yu Tian,1 Mei-Sheng Zhao,2 and Yan Ma2

1School of Physics and Astronomy, Sun Yat-Sen University, Zhuhai, Guangdong 519082, China
2QuantumCTek Co. Ltd., Hefei, Anhui 230000, China

Introduction- Based on the principle of quantum me-
chanics, “quantum cryptography” is a possible means of
implementing unconditional secure communication. One
famous quantum cryptography approach is quantum key
distribution (QKD) combined with One-Time pad. Since
the proposal of the first QKD protocol BB84, QKD has
attracted much interest. The unconditional security of
QKD had been proven in both perfect and imperfect de-
vices. QKD has also been experimentally demonstrated
in fibers, free space, and satellites. However, because
practical devices are imperfect, some assumptions of the
theoretical analysis may be violated in practical situa-
tions. If the gap between theory and practice is exploited
by an eavesdropper (Eve), the security of the final key
may be broken.

In the BB84 protocol, both Alice and Bob must deter-
mine how to prepare and measure the quantum states.
For this purpose, they require random bits. In practi-
cal situations, the random bits may be weakly known or
controlled by Eve, and the security of the generated key
is compromised. A typical attack that exploits the weak
randomness of QKD is wavelength attack. To mitigate
this problem, we develop an analytical formula that es-
timates the key rate for both the single photon source
(SPS) and the weak coherent source (WPS). In numer-
ical simulations, our method significantly increased the
key rate over the original method of Li et al. [1].

Main Results- For BB84 protocol, the key rate can be
written as

rsps ≥ 1−H(eb)−H(ep),

rwps ≥ −QµfECH(Eµ) +Q1[1−H(e1p)].
(1)

Here the subscript ”sps” and ”wps” represent the key rate
is estimated for SPS and WPS, respectively. eb is the bit
error, ep is the phase error for single photon pulse. Qµ
(Eµ) is the gain (error rate) of signal state, Q1 is the gain
of single photon pulse. H(·) is the Shannon function.

Due to the imperfection of random bit, the phase error
ep and e1p do not equal with the bit error in X-basis (exb ),
thus a new method is required to bound the phase error
with given flaws of random bit and the bit error (exb ).
In this paper, we proved that the upper bound of phase
error rate can be written as (see full text for details)

ep ≤
1 + 2ε1
1− 2ε1

eXb +
1

2
−
√

1

4
− ε20. (2)

Here ε0 and ε1 are the flaws of random bit used by Alice
and Bob, which is defined as∣∣∣∣p (x0 = k|λ0 = i)− 1

2

∣∣∣∣ ≤ ε0,∣∣∣∣p (x1 = k′|λ1 = j)− 1

2

∣∣∣∣ ≤ ε1, (3)

in which x0 (x1) is the random bit for bit (basis), λ0 and
λ1 are the hidden variable controlled by Eve.

With the analysis given above, we can estimate the
key rate under imperfect random bit, which is shown in
Fig.1, which clearly show that our method can improve
the performance of QKD system even if the random bits
used by Alice and Bob are weakly controlled by Ev.

Conclusions- We evaluated the security of QKD with
weak basis-choice flaws. The previous analysis of Li et
al. [1] was extended by applying a tight analytical bound
for estimating the phase error. The final key rate was
significantly improved by the proposed approach. For
example, when ε0 = ε1 = 0.1 and the bit error rate
exceeded 3.4%, no final key was generated by the pre-
vious method, but a final key rate of 0.45 was achieved
by our method. Applying our analysis, we evaluated the
security of a practical QKD system in which Bob pas-
sively chooses his basis with a BS. In experiments using
a practical BS with typical parameters, the key rate was
reduced by less than 6%. Thus, the proposed method im-
proves the QKD performance even in weak randomness
scenarios.
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FIG. 1. Key rates in the original analysis [1] (red lines) and
the method proposed in this paper (blue lines). Results are
plotted for SPS (left) and WPS (right). The black solid line
is the result of the ideal case without basis-choice flaws. To
simplify the simulation, we assume ε0 = ε1 and infinite decoy
states. The WPS case employs the experimental results of
GYS [2]; thus, the signal state intensity is s = 0.48 and the
other parameters are set as follows: dark count rate Y0 =
1.7 × 10−6, background error rate e0 = 0.5, fiber loss 0.21
dB/km, Bob’s transmittance ηBob = 0.045, and error rate of
optical devices edet = 3.3%. The method of Ref. [1] generates
no key in the case of WPS with ε0 = ε1 = 0.1.
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