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Overview

We describe a device-independent quantum key distribution (DIQKD) protocol that is symmetric be-
tween Alice and Bob using the notion of a synchronous correlation. Our analysis uses nonlocal games,
p(yA, yB | xA, xB) where xA, xB ∈ X and yA, yB ∈ Y that are synchronous: p(yA, yB|x, x) = 0 whenever x ∈ X
and yA 6= yB ∈ Y .

We show that when |X| = 2 and |Y | = 2, all synchronous symmetric nonsignaling correlations are classical,
and therefore there are no synchronous Bell inequalities. When |X| = 3, |Y | = 2 we show there are precisely
four synchronous Bell inequalities, each of the form J0, J1, J2, J3 ≥ 0, where each Jk is an affine function
of the correlation matrix entries. We examine violation of these Bell inequalities and prove a synchronous
analogue of Tsirel’son bound: each J0, J1, J2, J3 ≥ −1

8.

We extend beyond synchronous correlations and show that there are natural measures of asymmetry, a form
of bias, and asychronicity, and these bound the potential synchronous Bell violations realizable by general
classical correlations.

A Synchronous QKD Protocol

A single round of the protocol operates as follows:

1 Alice and Bob share an EPR pair 1√
2(|00〉 + |11〉).

2 Independently, Alice and Bob randomly select
from one of three fixed measurement bases to
measure his or her half of the EPR pair.

3 After measurement, Alice and Bob exchange the
basis selection they made.

4 If they selected the same basis, they store the
output of their measurements as a shared secret
value. If they chose differing bases, they exchange
their measurement outcomes and store these for
later performing a self-test of the device.

Nonlocal games

Two players, Alice and Bob:

• have inputs xA, xB ∈ X and output yA, yB ∈ Y ;
• may use preshared randomness and quantum
resources (e.g. EPR pairs) no communication.

We study nonsignaling nonlocal games based on
synchronous correlations.

• A correlation p is synchronous if p(yA, yB|x, x) = 0
whenever x ∈ X and yA 6= yB ∈ Y .

• A classical correlation takes the form

p(yA, yB|xA, xB) =
∑
ω∈Ω

µ(ω)pA(yA|xA, ω)pB(yB|xB, ω)

where ω is Alice and Bob’s preshared randomness.
• A quantum correlation takes the form

p(yA, yB|xA, xB) = tr((ExA
yA
⊗ F xB

yB
)ρ)

for ρ ∈ HA ⊗ HB and POVMs {Ex
y}y∈Y and {F x

y }y∈Y
for each x ∈ X .

Nonsignaling correlations with |Y | = 2 are often
written in coordinates:

axA =
∑
yA,yB

(−1)(1,0).(yA,yB)p(yA, yB|xA, xB)

bxA =
∑
yA,yB

(−1)(0,1).(yA,yB)p(yA, yB|xA, xB)

cxA,xB =
∑
yA,yB

(−1)(1,1).(yA,yB)p(yA, yB|xA, xB)

Synchronous Correlations

Result 1: A correlation p is symmetric and nonsignaling
if and only if (i) cxA,xB = cxB,xA and (ii) ax = bx.

Result 2: A correlation p is synchronous and nonsignal-
ing if and only if for all x ∈ X we have (i) cx,x = 1 and (ii)
ax = bx.

Every synchronous classical or quantum correlation
is symmetric, but there are synchronous nonsignal-
ing correlations that are not.

Result 3: When |X| = 2 every symmetric synchronous
nonsignaling correlation is classical.

Result 4: When |X| = 2 every synchronous quantum
correlation is classical, hence there are no synchronous Bell
inequalities in this case.

Synchronous Bell inequalities

In the case of X = {0, 1, 2} and Y = {0, 1} we find
four synchronous Bell inequalities:

J0 = 1
4 (1− c01 − c02 + c12) ≥ 0

J1 = 1
4 (1− c01 + c02 − c12) ≥ 0

J2 = 1
4 (1 + c01 − c02 − c12) ≥ 0

J3 = 1
4 (1 + c01 + c02 + c12) ≥ 0

Tsirel’son Bounds and Rigidity

Result 5: Every synchronous symmetric nonsignaling
strategy satisfies J0, J1, J2, J3 ≥ −1

2.

Like CHSH or Magic Square games, we use

Mx = Ex
0 − Ex

1

which are ±1-valued observables. Then, e.g.,

tr((M0 + M1 + M2)2) = 1 + 8J3.

Result 6: Every synchronous quantum correlation satis-
fies J0, J1, J2, J3 ≥ −1

8.

Result 7: For each k = 0, 1, 2, 3 there exists a unique
synchronous quantum correlation with Jk = −1

8.

For example, J3 = −1
8 for a shared EPR pair and ob-

servables:

[M0] =
(

1 0
0 −1

)
,

[M1] = 1
2

(
−1
√

3√
3 1

)
,

and [M2] = 1
2

(
−1 −

√
3

−
√

3 1

)
.

Rigidity result 7 above leads to a self-test for an EPR
pair. This is the basis for a device-independent secu-
rity proof for the protocol.

Asynchronicity and Asymmetry

Synchronous rigidity of, say, J3 = −1
8 produces a

certificate of a maximally entangled state. However,
asynchronous protocols can also have J3 = −1

8.

For the security proof we need to bound asyn-
chronicity, asymmetry, and bias defined as follows:

Aj,k = 1
2
(cj,k − ck,j) (“asymmetry")

Bj = aj − bj (“bias")

Cj,k = 1
2
(cj,k + ck,j) (for j 6= k)

Sj = 1− cj,j (“asynchronicity")

Result 8: Among symmetric classical correlations, at
most one of J0, J1, J2, J3 ≥ 0 can be violated. Moreover
any such violation satisfies Jj ≥ max{−S0

4 ,−
S1
4 ,−

S2
4 } and

this bound is sharp.

Result 9: Suppose max{|Aj,k|, |Bj|, Sj} ≤ ε. Then no
synchronous Bell violation J3 <

ε
2 can come from a (asym-

metric, biased, and asynchronous) classical correlation.

Causality Loophole

Causality Loophole (roughly): maximal Bell viola-
tions can be simulated with classical communication.

A new security assumption: Eve has imperfect
knowledge of Alice’s and Bob’s inputs.

Informally, even with unlimited resources, to pro-
duce a correlation with J3 = −1

8 and S ≤ µ0 re-
quires Eve have near perfect knowledge of Alice’s
and Bob’s inputs.

We plot the maximum value for Eve’s uncertainty
εmax, for asynchronicity µ0. Here S̃ = .01 is Eve’s
asynchronicity, and λ is the allowed error in the ex-
pected J3 violation.
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Conclusions

1 For |X| = |Y | = 2, there are no synchronous Bell
inequalities.

2 For |X| = 3, |Y | = 2, there are four synchronous
Bell inequalities.

3 Maximal synchronous Bell violations are rigid and
lead to self-tests of an EPR pair.

4 We obtain a symmetric device-independent
quantum key distribution protocol.

5 Proposed a mild security assumption that avoids
the “causality loophole” in DIQKD protocols.
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