

Heinrich Heine Universität Düsseldorf

Entropic bounds for multiparty device-independent cryptography F. Grasselli, <u>Gláucia Murta</u>, H. Kampermann, and D. Bruß

Heinrich-Heine-Universität Düsseldorf arXiv:2004.14263

THE DEVICE-INDEPENDENT SCENARIO

• No assumptions on distributed system or

MABK test

Each party has 2 inputs with 2 outputs, $x, y, z \in \{0, 1\}$ and $a, b, c \in \{0, 1\}$. They test for the MABK inequality[1]:

 $\mathcal{M} = \langle A_0 B_0 C_1 \rangle + \langle A_0 B_1 C_0 \rangle + \langle A_1 B_0 C_0 \rangle - \langle A_1 B_1 C_1 \rangle \leq 2,$

 A_x is the observable corresponding to Alice's measurement labeled by x, and similarly for B_y and C_z .

Figure of merit

The information available to an eavesdropper about the parties' outcome can be quantified by conditional entropies:

H(A|E), H(AB|E)<u>GOAL</u>: estimate these entropies given that the MABK inequality is violated.

- measurements performed by the devices.
- Security certified by the statistics of inputs and outputs: p(abc|xyz).

RESULT 1: 'ALMOST' GHZ-DIAGONAL STATE

We can restrict the analysis to **almost GHZ diagonal states** and **rank-1 projective measurements**.

$$\rho = \begin{pmatrix} \lambda_{000} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \lambda_{100} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \lambda_{001} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \lambda_{101} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \lambda_{010} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \lambda_{110} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \lambda_{011} & is \\ 0 & 0 & 0 & 0 & 0 & 0 & -is & \lambda_{111} \end{pmatrix},$$

in the GHZ-basis: $|\psi_{ijk}\rangle = Z^i \otimes X^j \otimes X^k \frac{1}{\sqrt{2}} (|000\rangle + |111\rangle); i, j, k \in \{0, 1\}.$

For *N* parties:

$$\rho = \sum_{\vec{u}} \left[\lambda_{0\vec{u}} |\psi_{0\vec{u}}\rangle \langle \psi_{0\vec{u}}| + \lambda_{1\vec{u}} |\psi_{1\vec{u}}\rangle \langle \psi_{1\vec{u}}| + is_{\vec{u}} (|\psi_{0\vec{u}}\rangle \langle \psi_{1\vec{u}}| - |\psi_{1\vec{u}}\rangle \langle \psi_{0\vec{u}}|) \right]$$

for $\vec{u} \in \{0, 1\}^{\times N-1}$ Moreover N terms $s_{\vec{u}}$ can be set to zero and N pairs

RESULTS 3: BOUNDING EVE'S INFORMATION

- Using Results 1 and 2 we prove a lower bound on H(A|E) as a function of the MABK value (green curve).
- The bound is tight and achieved for the family of states

can be ordered as $\lambda_{0\vec{u}} \ge \lambda_{1\vec{u}}$.

Ingredients of the proof:

- Two binary measurements per party ⇒ reduction to qubits and rank-1 projective measurements [2].
- Symmetrisation of marginals (can be enforced in the protocol): $\langle A_x B_y \rangle = \langle A_x C_z \rangle = \langle B_y C_z \rangle = \langle A_x \rangle = \langle B_y \rangle = \langle C_z \rangle = 0.$
- Use of extra degrees of freedom (local rotations).

RESULT 2: MAXIMAL MABK VIOLATION

For arbitrary *N*-qubit state ρ and rank-1 projective measurements:

 $\mathcal{M}_{\rho} \leq 2\sqrt{u_1 + u_2}$ where u_1 and u_2 are the largest and second-to-the-largest eigenvalues of $T_{\rho}^T T_{\rho}$, and T_{ρ} is the correlation matrix.

<u>Correlation matrix for N = 3 is the 3 × 9 matrix defined by the elements</u>

 $[T_{\rho}]_{ij} = \operatorname{Tr} \left(\sigma_{\mu} \otimes \sigma_{\nu} \otimes \sigma_{\gamma} \rho \right) \text{ s.t. } i = \mu \text{ and } j = 3(\nu - 1) + \gamma.$ $\sigma_{1} = X, \sigma_{2} = Y, \sigma_{3} = Z$ $\tau(\nu) = \nu |\Phi_{000}\rangle \langle \Phi_{000}| + (1-\nu) |\Phi_{011}\rangle \langle \Phi_{011}|, \quad \nu \in [0,1].$

- Tight bound can be extended for arbitrary *N*.
- Our bound coincides with bound based on the MABK-CHSH correspondence [5] ⇒ genuine multipartite entanglement is necessary for positive entropy.

• Our bound improves previous result [6] based on H_{\min}

This generalizes the well known result for the CHSH inequality [3]. Our bound is tighter than the previously derived bound in Ref. [4].

REFERENCES

 [1] N. D. Mermin, PRL 65, 1838 (1990); M. Ardehali, PRA 46, 5375 (1992); A. V. Belinskiĭ and D. N. Klyshko, Physics-Uspekhi, 36(8) 653 (1993).
[2] S. Pironio *et al.* NJP 11, 045021 (2009).
[3] R. Horodecki, P. Horodecki, and M. Horodecki. Phys. Lett. A, 200, 340, (1995).
[4] M. A. Siddiqui and S. Sazim. Quantum Inf. Process. 18: 131 (2019).
[5] J. Ribeiro, G. Murta, and S. Wehner. PRA 97, 022307 (2018).
[6] E. Woodhead, B. Bourdoncle, and A. Acín. Quantum 2, 82 (2018).
[7] T. Holz, D. Miller, H. Kampermann, and D. Bruß. PRA 100, 026301 (2019).
[8] J. Ribeiro, G. Murta, and S. Wehner. PRA 100, 026302 (2019); T. Holz, H. Kampermann, D. Bruß. arXiv:1910.11360. \Rightarrow higher rates for randomness expansion protocols.

APPLICATIONS AND OUTLOOK:

Randomness expansion:

- $H(A|E) > 0 \Rightarrow$ Alice can extract secret randomness. A finite regime analysis can determine required parameters for an implementation.
- Next step: derive tight bounds to global randomness for more parties. Advantage in using many parties?

Conference key agreement (CKA):

- CKA also requires maximal correlation among the parties \Rightarrow MABK inequality is not suitable for conference key agreement [7].
- Can we extend our method to derive tight bound on *H*(*A*|*E*) when the parties test for Bell inequalities that are useful for CKA [8]?