Quantum repeaters in space

<u>Carlo Liorni</u>, Hermann Kampermann, Dagmar Bruß Institut für Theoretische Physik III, Heinrich-Heine-Universität, Düsseldorf 40225, Germany carlo.liorni@hhu.de

This project has received funding from the European Union's *Horizon 2020 research and innovation programme under the* Marie Skłodowska-Curie grant agreement No 675662.

Introduction

hhu

• Losses in optical fibres hinder the direct transmission of quantum signals

Heinrich Heine

Universität Düsseldorf

- Quantum Repeaters (**QR**s) [1] can solve the problem
- **Satellite links** can bridge long distances [2]
- With satellites, **few** QRs are sufficient to reach **global** distances
- **Orbiting repeater** stations greatly improve the performance, reliability and flexibility and seem feasible

Quantum repeaters

Entanglement Swapping (ES)

Standard **QR** chain configuration [1] (in optical fibres). Divide the link in 2^n elementary links.

S produces and sends **pairs of entangled photons** to the adjacent QRs [4].

Entanglement sources (S) on satellites: substitute fibre links with satellite double down-links [2,5] or **inter-satellite** links [3]

Secret Key Rate

Results

 $R_{QKD}^{BB84} = R_{rep} P_{click} R_{sift} r_{\infty}^{BB84}$ $R_{rep} = \frac{1}{T_0} P_0 P_{QND}^2 P_W^2 \left(\frac{2}{3} P_{ES} P_R^2\right)^n$

- **BB84** protocol, measurement on the entangled pairs shared at the end points
 - I_0 elementary time [6] P_0 transmittance elem. link P_{QND} heralding efficiency P_W QM write probability

Scheme GG

 $P_{click} = \eta_d^2$ $r_{\infty}^{BB84} = 1 - h(e_Z) - h(e_X)$

QR analysis of [7], added **inefficiencies**, **probabilistic ES** and **no Entanglement Distillation** (ED) [8].

 P_{ES} ES success probability

- QM read probability P_R
- detection efficiency η_d

The error rate $e_Z(e_X)$ in the Z(X) basis is monitored in the final measurements of the quantum states at the end points, h is the binary entropy.

1000

1500

2000

- Much less weather dependent, requires good weather conditions only at the end points
- Potential almost world-wide coverage with few satellites
- Easy trans-oceanic links (very difficult in OG)
- Longer fly-by duration

Parameters

- Ultra low-loss fibres (attenuation α =0.17 dB/km)
- Imperfect Gaussian beams with quality factor M^2
- We assumed long coherence times of the memories

[3] C. Liorni et al., arXiv:2005.10146 (2020).

- [4] Then entanglement is swapped in a hierarchical way, until the ends are reached. [5] K. Boone et al., PRA 91, 052325 (2015).
- [6] Here, inverse of the source rep. rate (20MHz).
- [7] S. Abruzzo et al., PRA 87, 052315 (2013).
- [8] We consider high fidelity elementary pairs (F=0.98), which might require one round of ED.

2500

3000

Included mixing with environmental photons

R_s	$20 \mathrm{MHz}$	Repetition rate of the source
$R_s^{n=0}$	1 GHz	Repetition rate of the source
P_{QND}	0.5	QND measurement efficiency
P_W	0.9	Memory writing efficiency
P_R	0.9	Memory reading efficiency
η_d	0.9	Detector efficiency
$P_{\rm dark}$	10^{-5}	Dark click probability
h	$500 \mathrm{km}$	Altitude circular orbits
W_0	$0.25 \mathrm{~m}$	Initial beam width
R_{OO}	$0.5 \mathrm{m}$	Receiver radius OO
R_{OG}	$0.5 \mathrm{m}$	Receiver radius OG
λ	580 nm	Wavelength, OO and OG
M^2	3	Quality factor
F_0	0.98	Initial pair Fidelity