

Experimental Twin-Field Quantum Key Distribution Through Sending-or-Not-Sending

Yang Liu

Jinan Institute of Quantum Technology (JIQT) University of Science and Technology of China (USTC)

QCRYPT 2020

Twin-Field QKD (TF-QKD)

Proposed in 2018, which "greatly extending the range of secure quantum communications", and "feasible with current technology".

Lucamarini, M., et.al., *Nature* **557**, 400–403 (2018).

LETTER

https://doi.org/10.1038/s41586-018-0066-6

Overcoming the rate-distance limit of quantum key distribution without quantum repeaters

M. Lucamarini1*, Z. L. Yuan1, J. F. Dynes1 & A. J. Shields1

Quantum key distribution (QKD)^{1,2} allows two distant parties to share encryption keys with security based on physical laws. Experimentally, QKD has been implemented via ontical means.

latter, outer space provides a low-loss propagation medium, but the key rate per loss unit remains unchanged.

On the other hand, the scheme presented here can overcome the

Recent Progress

Theories

Nature 557, 400 (2018). Phys Rev Appl 12, 054034 (2018). Phys Rev Appl 11, 034053 (2018). Phys Rev X 8, 031043 (2018). Phys Rev A 98, 042332 (2018). Npj QI **5**, 64 (2019). Phys Rev A 98, 062323 (2018). New J Phys **21**, 073001 (2019). New J Phys **21**, 113032 (2019). New J Phys 22, 013020 (2019). PR Applied **11**, 034053 (2019). Phys Rev A 100, 062337 (2019). Phys Rev Appl **12**, 024061 (2019). Phys Rev A 100, 022306 (2019). Sci Report **9**, 14918 (2019). New J Phys 21, 123030 (2019). Npj QI 5, 64 (2019). Phys Rev A 99, 062316 (2019). Opt Lett **44**, 1468 (2019). Phys Rev A **101**, 042330 (2020). New J Phys 22, 053048 (2020). Opt Express 28, 22594 (2020).

Experiments

Experimental quantum key distribution beyond the repeaterless secret key capacity, *Nature Photonics* **13**, 334 (2019).

Beating the Fundamental Rate-Distance Limit in a Proof-of-Principle Quantum Key Distribution System, *Physical Review X* **9**, 021046 (2019).

Experimental Twin-Field Quantum Key Distribution Through Sending-or-Not-Sending, *Physical Review Letters* **123**, 100505 (2019).

Proof-of-Principle Experimental Demonstration of Twin-Field Type Quantum Key Distribution, *Physical review letters* **123**, 100506 (2019).

Sending-or-Not-Sending with Independent Lasers: Secure Twin-Field Quantum Key Distribution Over 509 km, *Physical Review Letters* **124**, 070501 (2019).

Implementation of quantum key distribution surpassing the linear rate-transmittance bound, *Nat Photonics* **14**, 422–425 (2020).

(and many more works...)

Previous QKD performances

Status of QKD (before TF-QKD) Systems

Limited distribution distance in QKD systems

Distribution Distance (km)

Example: Decoy based BB84 QKD

System	Exp. Time	System Freq.	Det. Efficiency	QBER	Dark count
Commercial	5 mins	100 MHz	30%	2%	10000
Lab Exp.	1 Month	1 GHz	90%	1%	10
Ideal Exp.	>1 Month	10 GHz	100%	0%	0.1
Ideal Exp. *	>1 Month	10 GHz	100%	0%	0

To improve the performance...

Further enhancing the distribution distance

to share encryption keys with security based on physical laws. Experimentally, QKD has been implemented via optical means, achieving key rates of 1.26 megabits per second over 50 kilometres of standard optical fibre¹ and of 1.16 bits per hour over 404 kilometres of ultralow-loss fibre in a measurement-device-independent orolfiguration⁵. Increasing the bit rate and range of QKD is a of standard optical fibre¹ and of 1.16 bits per hour over 404 kilometres and and optical fibre¹ and of 1.16 bits per hour over 404 kilometres of ultralow-loss fibre in a measurement-device-independent and the standard optical fibre¹ and of 1.16 bits per hour over 404 kilometres of ultralow-loss fibre in a measurement-device-independent and the standard optical fibre¹ and of 1.16 bits per hour over 404 kilometres of ultralow-loss fibre in a measurement-device-independent and the standard optical fibre¹ and and the standard optical fibre¹ and the standa

On the other hand, the scheme pro point-to-point SKC², This is demonstracipate the twin-field QKD (TF-QKD) TF-QKD (dashed line) overcomes the ro of standard optical fibre (lighter-pink s

Key rate v.s. Channel loss

Protocol	Key rate	
BB84 (Single Photon)	$R = \eta [1 - H_2(\delta) - H_2(\delta_p)]$	$R \propto \eta$
BB84 (Coherent light)	$R = \frac{1}{2} p_D \times R' \approx \eta^2 \Delta \times R'$ $R' = [(1 - \Delta) - H_2(\delta) - (1 - \Delta)H_2\left(\frac{\delta_p}{1 - \Delta}\right)]$	(if Δ fixed as η gets small) $R \propto \eta^2$ Gottesman, Daniel, et al. <i>ISIT 2004</i> .
BB84 (Decoy)	$R = q\{Q_1[1 - H_2(e_1)] - Q_{\mu}H_2(E_{\mu})\}$ $Q_{\mu} = Y_0 + 1 - e^{-\eta\mu} \approx \eta\mu \qquad Q_1 = \eta\mu e^{-\mu}$	$R \propto \eta$ PRL 94.230503 (2005) PRL 94.230504 (2005).
MDI-QKD	$R = P_z^{11} Y_z^{11} [1 - H_2(e_x^{1,1})] - Q_z f(E_z)$	$H_2(E_z) \qquad R \propto \eta$

Key rate v.s. Channel loss

Key rate v.s. Channel loss

Protocol	Key rate	
BB84 (Single Photon)	$R = \eta [1 - H_2(\delta) - H_2(\delta_p)]$	$R \propto \eta$
BB84 (Coherent light)	$R = \frac{1}{2} p_D \times R' \approx \eta^2 \Delta \times R'$ $R' = [(1 - \Delta) - H_2(\delta) - (1 - \Delta)H_2\left(\frac{\delta_p}{1 - \Delta}\right)]$	(if Δ fixed as η gets small) $R \propto \eta^2$ Gottesman, Daniel, et al. <i>ISIT 2004</i> .
BB84 (Decoy)	$R = q\{Q_1[1 - H_2(e_1)] - Q_{\mu}H_2(E_{\mu})\}$ $Q_{\mu} = Y_0 + 1 - e^{-\eta\mu} \approx \eta\mu \qquad Q_1 = \eta\mu e^{-\mu}$	$R \propto \eta$ PRL 94.230503 (2005) PRL 94.230504 (2005).
MDI-QKD	$R = P_z^{11} Y_z^{11} [1 - H_2(e_x^{1,1})] - Q_z f(E_z)$	$H_2(E_z) \qquad R \propto \eta$
TF-QKD	$R = Q_{\mu,L}^{1} [1 - H_2(e_{\mu,L}^{1})] - Q_{\mu,L} f(E_z) H$	$_{2}(E_{\mu,L}) \qquad R \propto \sqrt{\eta}$

Twin-Field QKD (TF-QKD)

TF-QKD Protocol

To be more specific...

1) General "Sending-Receiving "QKD (e.g., BB84)

2) Measurement device independent (MDI-QKD)

TF-QKD Schemes

3) Twin-Field QKD (QKD)

4) Sending-or-Not-Sending (SNS-TF-QKD)

Wang, X.-B., et.al., *Physical Review A* 98, 062323 (2018).

SNS-TF-QKD Introduction: Encoding

Alice/Bob Encoding (Example)

Basis	Phase (Alice / Bob)	Intensity	S/NS	Probability
Z	$ heta_A$ / $ heta_B$	μ_z	Not Sending	$p_z * (1 - p_a)$
Z	$ heta_A$ / $ heta_B$	μ_z	Sending	$p_z * p_a$
Х	$ heta_A$ / $ heta_B$	$\mu_0 = 0$	Sending	$p_X * p_0$
Х	$ heta_A$ / $ heta_B$	μ_1	Sending	$p_X * p_1$
Х	$ heta_A$ / $ heta_B$	μ_2	Sending	$p_X * p_2$

Wang, X.-B., et.al., *Physical Review A* 98, 062323 (2018).

Z basis: encoding 0/1 with "Send"/"Not Sending" X basis: encoding with 16 different phases θ_A/θ_B

e.g.,
$$\left|\sqrt{\mu_z} e^{i\theta_A}\right| \left|\sqrt{\mu_z} e^{i\theta_B}\right|$$

SNS-TF-QKD Introduction: Decoding

Charlie measures all interference, and announces effect event with: One detector counting if A/B both determined signal/decoy window

	Alice	Bob
Corroct	S	Ν
Correct	N	S
Гикок	S	S
Error	N	N

Z-Window (A/B choose Z basis)

X-Window (A/B choose X basis) Only keep the events satisfy: $|\theta_A - \theta_B + \Delta \varphi_T| \le Ds$

 $|\theta_A - \theta_B + \Delta \varphi_T| \le Ds + \pi$

where $\Delta \varphi_T$ is the path phase, Ds is the allowed deviation.

Range	Ds	$Ds + \pi$
Correct	Det 1	Det 2
Error	Det 2	Det 1

The phase and bit information are not announced. Detections for different bases are record for analysis.

ZZ00, ZZ03, ZZ30, ZZ33, ZX00, ZX01, ZX02, ZX30, XZ00, XZ10, XZ20, XZ03, XX00, XX01, XX02, XX20, XX11, XX22

SNS-TF-QKD Introduction: Security

Estimate flipping rate in X1-window $e_1^{\chi_1} \leq \bar{e}_1^{\chi_1} = \frac{S_\mu E_\mu^X - e^{-2\mu} s_0/2}{2\mu e^{-2\mu} s_1}$ Asymptotically: $e_1^{ph} = e_1^{\chi_1}$ Final secure key rate: $N_f = n_1 - n_1 H(e_1^{ph}) - n_t f H(E^Z)$

Security is proofed with Virtual protocols and reduction:

Consider virtual ancillary state An, phase randomized coherent state, extended state is

$$\Omega = \sum_r q_r \Omega_r$$
 ,with

(for 1-photon/vac/multi-photon)

Consider 1-photon component,

$$\begin{split} \Omega_2 &= (1/2)[(|0\rangle\langle 0|\tilde{\otimes}\bar{\rho})\otimes|01\rangle\langle 01| + (\bar{\rho}\tilde{\otimes}|0\rangle\langle 0|)\otimes|10\rangle\langle 10|],\\ \Omega_3 &= |00\rangle\langle 00|\otimes|00\rangle\langle 00|,\\ \Omega_4 &= (\rho_{\mu'}\tilde{\otimes}\rho_{\mu'})\otimes|11\rangle\langle 11|.\\ \Omega_{0i} &= |\Psi_{1i}\rangle\langle \Psi_{1i}|, \end{split}$$

 $\Omega_1 = (1/2)(|01\rangle\langle 01| \otimes |01\rangle\langle 01| + |10\rangle\langle 10| \otimes |10\rangle\langle 10|),$

$$|\Psi_{1i}
angle = rac{1}{\sqrt{2}}(e^{i\gamma_{B_i}}|01
angle\otimes|01
angle + e^{i\gamma_{A_i}}|10
angle\otimes|10
angle)$$

After Charlie's measuring, and purification ancillary state becomes $|\Phi^0\rangle = |01\rangle + |10\rangle$, A/B measure locally to obtain final key k_f or $|\Phi^1\rangle = |01\rangle - |10\rangle$

SNS-TF-QKD Introduction: Conclusion

TF-QKD

- MDI- type QKD protocol
- Key rate scales with square root of loss: $R \propto \sqrt{\eta}$
 - Longer distribution distance and higher key rate

SNS-TF-QKD

- Object to the set of the set o
 - So decoy state method can apply
- Phase interference only in X basis
 - OBER in Z basis can be negligibly small
 - Allow high (e.g., 20%) X basis QBER due to interference
 - Still possible to achieve long distribution distance

Challenges in TF-QKD experiment

Experimental TF-QKD is not easy

Single photon interference

- Requires same wavelength independent laser
- Requires ultra narrow laser bandwidth (10 kHz)
- Requires precise fiber phase stabilization

Low dark count noise

- ●SNS-TF-QKD requires ultra-low dark count in SPD
- Output Standing and controlling fiber noise

Phase stabilization

Reference pulses requires deep modulationStabilizing/recover phase in short time

SNS-TF-QKD experimental setup

SNS-TF-QKD Setup

SNS-TF-QKD: Phase Stabilization

Phase interference with Independent lasers

MDI-QKD (as comparison) Two photon interference, do not require phase interference, only requires time coincidence and wavelengths from the sources are the same.

- Stabilizing source wavelength
 - A/B uses narrow bandwidth lasers (<kHz)
 - A/B locks the laser wavelength with each other
- Stabilizing fiber phase fluctuation
 - A/B Stabilize the phase within the statistical period

Laser source stability

- The interference result of single laser source
 - The wavelength stability compared with different lasers
 - With one single source passes a 20 km arm unbalanced interferometer
 - Limits the time period phase is stable

Laser sources

- Continuous wave laser sources (< 1 Hz linewidth)
 - Alice internally locks to her cavity at 1550.0465 nm
 - Bob locks to his cavity at 1550.0474 nm with PDH
 - Relative frequency drift ~0.1 Hz/s (freq. diff. ~112 MHz)
- Wavelength locking through 500 km fiber (9 EDFAs)
 - B compensate source phase difference with AOM (~100 Hz)
 - A compensate fiber phase fluctuation with AOM (~50 Hz)
 - Bi-EDFA gain is set to ~11 dB to control the signal intensity below the threshold for Stimulated Brillouin Scattering (SBS)

Phase fluctuation by fiber fluctuation

Single source, 75 km x 2: 7.1 rad/ms

-10 -30 -30

10

20

30

40

50

Time (ms)

70

60

80

90

100

Independent lasers, 509 km: 9.6 rad/ms

Compensating fiber phase drift

Estimate fiber phase with reference pulse Assume phase is stable within 10 μ s (Based on measure rate 7.5 rad/ms)

- > Interference relates to phase difference: $I(\phi) = 4\cos^2(\phi/2)$
- > By sending phase sequences in ref: $\theta_A - \theta_B = \{0, \pi/2, \pi, 3\pi/2\}$
- Consider the relative phase in fiber: $\phi = \theta_A - \theta_B + \Delta \varphi_T$
- We establish error model:

$$Err(\Delta \varphi_T) = \sum_i [p_i - p_{Ti}(\Delta \varphi_T)]^2$$

> Minimizing error to get relative phase $\Delta \varphi_T$

Requirements of Reference Pulse

- 1. Wavelength: $\lambda_{Ref} = \lambda_{Sig}$
- 2. Reference travel the same path as signal
- Reference intensity should be high (~2MHz detection) for quick estimation

superconducting nanowire SPD (SNSPD)

- Higher Counting rate
 - For fast phase compensation with reference pulses
 - Parallel configuration includes kinetic inductance recovery time
 - − 50 Ohm shunt resistor ⇒ prevent the detector latching at high count rates
 - Achieves 10 Mhz with continuous light test (>3MHz that is required)
- Lower Dark count for Signal
 - For long distance distribution. QBER-Z is ultra-sensitive to noise.
 - Integrating a filter onto the end face of the coupling fiber
 reduce dark count and the insertion loss
 - active area of 16 μm in diameter
 - System efficiency 56% and 58%
 - Dark count ~3.5 Hz

SNS-TF-QKD experimental results

Fiber (Signal)	Fiber spools without stabilization
Fiber (locking)	Same or longer than signal fiber
System frequency	30 ns signal interval 3 μs for signal, 2 μs for phase estimation
Phase estimation	Collect phase estimation data in 10 μ s
Fiber drift	<10 rad/ms (up to 509 km)
Failure probability	$\epsilon = 10^{-10}$ (considering finite size effect and statistical fluctuation)

Experiment I: proof of principle

- SNSPD efficiency: 75.3%/76.6%, dark count: ~1000 Hz (10^{-6} per ns)
- Total pulses sent = 7.2×10^{11} (about 10 hours)
- Valid detections are:
 0 km: 6.5×10⁹, 50 km: 2.3×10⁹, 100 km: 7.6×10⁸, 150 km: 2.5×10⁸

Physical Review Letters **123**, 100505 (2019).

Experiment I: proof of principle

- SNSPD efficiency: 75.3%/76.6%, dark count: ~1000 Hz (10⁻⁶ per ns)
- Total pulses sent = 7.2×10^{11} (about 10 hours)
- Valid detections are:
 0 km: 6.5×10⁹, 50 km: 2.3×10⁹, 100 km: 7.6×10⁸, 150 km: 2.5×10⁸

Sen Filtering	pulses and pha	ase help to d	ecrease erro	ors. 15200000
Sent-XZ20	36925200000	36958600000	36986000000	36998800000
Sent-XZ03	826800000	833000000	864200000	838800000
Sent-XX00	4034200000	4059800000	4006800000	4003000000
Sent-XX01	8159800000	8127400000	8009600000	8139000000

Experiment II: higher than relative PLOB

- SNSPD efficiency: 58%/38%, dark count: ~100 Hz (10^{-7} per ns)
- Total pulses sent = 7.2×10^{11} (about 10 hours)
- Valid detections 100 km: 1.7×10^9 , 200 km: 1.9×10^8 , 300 km: 2.4×10^7
- Decreasing QBER-X with the updated system

Experiment II: higher than relative PLOB

- SNSPD efficiency: 58%/38%, dark count: ~100 Hz (10^{-7} per ns)
- Total pulses sent = 7.2×10^{11} (about 10 hours)
- Valid detections 100 km: 1.7×10^9 , 200 km: 1.9×10^8 , 300 km: 2.4×10^7
- Decreasing QBER-X with the updated system

Experiment III: higher than absolute PLOB

- SNSPD efficiency: 58%/56%, dark count: ~3.5 Hz (3.5×10^{-9} per ns)
- Total pulses sent 350 km: 2.1×10¹¹, 408 km: 3.5×10¹¹, 509 km: 1.1×10¹²
- Valid detections 350 km: 2.0×10^{6} , 408 km: 2.6×10^{6} , 509 km: 9.0×10^{5}
- Using Ultra-Low-Loss fiber in 509 km (84.6 dB) experiment
- Using two-way classical communication in post processing

Re-Rayleigh Scattering Noise in Fiber

- When reference appears Rayleigh scattering (elastic scattering) in fiber
 - The intensity is proportional to the input power $P_L = P_0 e^{-\alpha L}$

$$dP_B = dP_{B'}e^{-\alpha L} = P_L S e^{-\alpha L} dL = P_0 S e^{-2\alpha L} dL$$

- Total reflected power $P_B = \int_0^L dP_B = \frac{P_0 S}{2\alpha} (1 e^{-2\alpha L})$
- Back Scattered light is again back scattered (Re-Rayleigh Scattering)

$$dP_{Sl} = P_0 S^2 e^{-\alpha L} e^{-\alpha (L-L')} e^{-\alpha (l-L')} dL dL'$$

With random polarization, the total power is

$$P_{srs} = \frac{1}{2} P_{Sl} = \frac{P_0 S^2}{4\alpha} e^{-\alpha l} [l + \frac{e^{-2\alpha l}}{2\alpha} - \frac{1}{2\alpha}]$$

$$\alpha$$
 = -0.168dB/km
S = 3.919×10⁻⁵
Ref = 2MHz (12.65 nW)

Noise ≈ 8 6cps (@500k

$$2\alpha$$

 3α
 3α

In all time period

Experiment III: higher than absolute PLOB

- SNSPD efficiency: 58%/56%, dark count: ~3.5 Hz (3.5×10^{-9} per ns)
- Total pulses sent 350 km: 2.1×10¹¹, 408 km: 3.5×10¹¹, 509 km: 1.1×10¹²
- Valid detections 350 km: 2.0×10^{6} , 408 km: 2.6×10^{6} , 509 km: 9.0×10^{5}
- Using Ultra-Low-Loss fiber in 509 km (84.6 dB) experiment
- Using two-way classical communication in post processing

Fiber Length	350 km	408 km	509 km
N _{total}	2.046×10^{11}	3.542×10^{11}	1.093×10^{12}
R	2.42×10^{-7}	1.03×10^{-7}	6.19×10^{-9}
n_1 (Before standard two-way classical communication)	585406	562378	160781
n_1 (After standard two-way classical communication)	158767	135844	43664
e_1^{ph} (Before standard Two-way on phase error	5.89%	6.95%	6.88%
e1 ^{ph} (After standard t	11.26%	13.18%	13.20%
QBER(Z - Before)	8.44%	6.99%	9.87%
Odd pairs in raw keys	230957	258911	62427
Even Pairs Two way on hit error	113156	121455	28638
Even Pairs Two-way on Dit error	122138	140446	34263
Error pairs in raw keys	3944	2864	1486
QBER(Z - After)	0.846%	0.550%	1.186%
QBER(X11)	3.2%	3.0%	3.7%
QBER(X22)	1.4%	2.7%	1.5%
rc	0.5	0.3	0.3
Ds	15°	12°	12°
r_{rc}	0.9999	0.9991	0.9988
r_{gate}	0.51	0.48	0.35
Sent-ZZ	143067040000	261059700000	586934380000
Sent-ZX00	912200000	1136400000	15419600000
Sent 7V01	220666000000	25150400000	169177400000

Two-way communication

Туре	C0	C1	D	V
Alice	0	1	1	0
Bob	1	0	1	0

e.g. 2 bits	VV	C0C1	C1D	DV	•••
Alice	00	01	11	10	
Bob	00	10	01	10	

PRA 66, 060302 (2002).

arXiv:1904.06331 (2019). Type CC VD DV DD PRA 101, 042330 (2020). Parity A 0 0 0 1 Assume C=C0, parity checking Parity B 0 0 0 1 (A=B?) is the same for other C **C1C0 COCO COC1 C1C1** Type VV DD VD DV 1 Parity B 0 0 1 1 0 0 1 bit-flip error rate reduced dramatically after BFER Correct

Standard two-way classical communication (for phase error) $\tilde{e}_1^{ph} = 2e_1^{ph}(1-e_1^{ph})$

$$N_f = \tilde{n}_1 \Big[1 - H \big(\tilde{e}_1^{\text{ph}} \big) \Big] - f [n_{t1} H(E_1) + n_{t2} H(E_2) + n_{t3} H(E_3)].$$

Odd Parity Sifting

Actively Odd Parity Sifting (AOPP)

Bit-flip error is concentrated on even-parity pairs: Sifting or actively make odd parity pairing in groups, will further reduce the bit flip error.

Experiment III: higher than absolute PLOB

- SNSPD efficiency: 58%/56%, dark count: ~3.5 Hz (3.5×10^{-9} per ns)
- Total pulses sent 350 km: 2.1×10¹¹, 408 km: 3.5×10¹¹, 509 km: 1.1×10¹²
- Valid detections 350 km: 2.0×10^{6} , 408 km: 2.6×10^{6} , 509 km: 9.0×10^{5}
- Using Ultra-Low-Loss fiber in 509 km (84.6 dB) experiment
- Using two-way classical communication in post processing

Fiber Length	350 km	408 km	509 km
N _{total}	2.046×10^{11}	3.542×10^{11}	1.093×10^{12}
R	2.42×10^{-7}	1.03×10^{-7}	6.19×10^{-9}
n_1 (Before standard two-way classical communication)	585406	562378	160781
n_1 (After standard two-way classical communication)	158767	135844	43664
e_1^{ph} (Before standard Two-way on phase error	5.89%	6.95%	6.88%
e1 ^{ph} (After standard t	11.26%	13.18%	13.20%
QBER(Z - Before)	8.44%	6.99%	9.87%
Odd pairs in raw keys	230957	258911	62427
Even Pairs Two way on hit error	113156	121455	28638
Even Pairs Two-way of Dit error	122138	140446	34263
Error pairs in raw keys	3944	2864	1486
QBER(Z - After)	0.846%	0.550%	1.186%
QBER(X11)	3.2%	3.0%	3.7%
QBER(X22)	1.4%	2.7%	1.5%
rc	0.5	0.3	0.3
Ds	15°	12°	12°
r_{rc}	0.9999	0.9991	0.9988
r_{gate}	0.51	0.48	0.35
Sent-ZZ	143067040000	261059700000	586934380000
Sent-ZX00	912200000	1136400000	15419600000
Sent 7V01	220666000000	25150400000	169177400000

Experiment III: higher than absolute PLOB

That is what we have for now, and next...

Outlook

1958 Horney and Technical

University of Science and Technology of China: Yang Liu, Jiu-Peng Chen, Chi Zhang, Jian-Yu Guan, Jin Lin, **Qiang Zhang, Jian-Wei Pan**

Tsinghua University:

Cong Jiang, Xiao-Long Hu, Zong-Wen Yu, Xiang-Bin Wang

CORNING

Shanghai Institute of Microsystem and Information Technology: Weijun Zhang, Hai Xu, Hao Li, Lixing You, Zhen Wang

National Key R&D Program of China

Corning Inc. Ming-Jun Li, Hao Chen

Anhui Initiative in Quantum Information Technologies

Thank you for listening!