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● Detection-efficiency mismatch due to manufacturing and setup

*Detectors considered in this work are threshold detectors. 

● Detection-efficiency mismatch induced by Eve

𝜂1

𝜂2

Polarized photons

PBS

Why detection-efficiency mismatch matters？

It is difficult to build two detectors with identical efficiency.

𝜂1

𝜂2

Polarized photons

PBS

Zhao et al., Phys. Rev. A 78, 042333 (2008)

spatial-mode-dependent temporal-mode-dependent

Rau et al.,  IEEE J. Quantum Electron. 21, 6600905 (2014)
Sajeed et al., Phys. Rev. A 91, 062301 (2015) 
Chaiwongkhot et al., Phys. Rev. A 99, 062315 (2019)
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● Efficiency mismatch helps Eve to attack QKD systems.

● Efficiency mismatch can cause fake violations of an entanglement 
witness. 

Lydersen et al., Nat. Photon. 4, 686 (2010) 
Gerhardt et al., Nat. Commun. 2, 349 (2011)

Problems caused by efficiency mismatch 

In the presence of efficiency mismatch, the detection events are not fair 
samples.  If only detection events are used, a Bell inequality can be violated 
even using classical light [Gerhardt et al., Phys. Rev. Lett. 107, 170404 (2011)].
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Source-replacement description
[Bennett, Brassard, Mermin, PRL 68, 557 (1992);       
Curty, Lewenstein, Lütkenhaus, PRL 92, 217903 (2004);          
Ferenczi, Lütkenhaus, PRA 85, 052310  (2012)]

| ۧ𝛹 𝐴𝐴′ = (| ۧH 𝐴| ۧH 𝐴′ + | ۧV 𝐴| ۧV 𝐴′)/ 2

Alice Entanglement
source

𝐴

𝐴′ sent
to Bob

POVM  

{𝑀𝑥
𝐴 = ۧ|𝜑𝑥 ൻ𝜑𝑥|}

Alice
Single-photon 

source

x ∈ 0,1,2,3

x {𝑝𝑥 = 1/4, ۧ𝜑𝑥

𝜑𝑥 ∈ {H, V, D, A}

Prepare & Measure BB84 
[Bennett and Brassard (1984)] 

Protocol analyzed in this work

Random number
• Assumption: Alice’s and Bob’s labs are 

secure and trusted.

•  Use of the entanglement-based 
scheme for security analysis.

1)  𝜌𝐴𝐴′  𝜌𝐴𝐵.

2) Alice’s measurements are ideal. 

• Warning: System 𝐴′ is two-dimensional, 
but the system 𝐵 arriving at Bob can be 
infinite-dimensional.

• Detection-efficiency mismatch exists in 
Bob’s measurement setup.

𝐴′ sent
to Bob
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Active Detection Passive Detection

Bob’s measurements & efficiency mismatch

PR – Polarization Rotator
PBS – Polarizing Beam Splitter
50/50 BS – 50/50 Beam Splitter

PR PBS

H/D

V/A

50/50 BS

PBSH/V

PBSD/A

A

V

D

H

Mode H/D V/A

1 𝜂1 𝜂2

2 𝜂2 𝜂1

Efficiency mismatch model considered 
Mode H V D A

1 𝜂1 𝜂2 𝜂2 𝜂2

2 𝜂2 𝜂1 𝜂2 𝜂2

3 𝜂2 𝜂2 𝜂1 𝜂2

4 𝜂2 𝜂2 𝜂2 𝜂1

Efficiency mismatch model considered 

*Our method works for arbitrary, characterized efficiency mismatch. 

2

Random bit 
b

Mode 2

Mode 1
Mode 1

3

4
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Obstacle to proving security with efficiency mismatch 

• Without efficiency mismatch, the squashing model exists.  A qubit-based security 
proof still applies.

[Beaudry,  Moroder, Lütkenhaus, Phys. Rev. Lett. 101, 093601 (2008);

Tsurumaru and Tamaki, Phys. Rev. A 78, 032302 (2008)]

• With efficiency mismatch,  the above squashing model doesn’t work.

• Previous security proofs with efficiency mismatch assume that the system arriving at 
Bob contains at most one photon.    
[Fung et al., Quantum Inf. Comput. 9, 131 (2009);  Lydersen and Skaar, Quant. Inf. Comp. 10, 0060  (2010);   

Bochkov and Trushechkin, Phys. Rev. A 99, 032308 (2019); Ma et al., Phys. Rev. A 99, 062325  (2019)]

Our contribution: We develop a method to handle the infinite-dimensional system   

received by Bob.  

*In parallel with us, Trushechkin recently developed an alternative method [arXiv:2004.07809].

Mutiphoton state Single-photon stateSquashing
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Alice Bob

Announcement Announcement

Sifting Sifting

Key map Key map

Brief introduction to a numerical approach for security proof

𝜌𝐴𝐵

Measurement {𝑀𝑥
𝐴} Measurement {𝑀𝑦

𝐵}

1. A protocol can be described by a set of POVMs {𝑀𝑥
𝐴⊗ 𝑀𝑦

𝐵 } (measurements),  Kraus operator 𝒢

(announcements and sifting), and Key map 𝒵 (forming key). The state 𝜌𝐴𝐵 is constrained by 
observations 𝑝𝐴𝐵 𝑥, 𝑦 --- the expectation values of POVMs.

QKD protocol

Key rate: 𝐾 = 𝛼 − 𝐻 𝐴 𝐵 , where 𝛼 for
privacy amplification and 𝐻 𝐴 𝐵 for error
correction. *Collective attacks are considered, 
and the key is defined by Alice.

𝛼 = min
𝜌𝐴𝐵

𝐷 𝒢 𝜌𝐴𝐵 ||𝒵(𝒢 𝜌𝐴𝐵 )

൝
𝜌𝐴𝐵 ≥ 0, Tr 𝜌𝐴𝐵 = 1

Tr (𝑀𝑥
𝐴 ⊗ 𝑀𝑦

𝐵 𝜌𝐴𝐵)= 𝑝𝐴𝐵 𝑥, 𝑦

Key-rate calculation

2. Once description is given, the key rate (privacy amplification part) takes the form of min 𝑓(𝜌𝐴𝐵) , 
where one needs to minimize 𝑓 depending on 𝜌𝐴𝐵 (Eve’s attack). 

3. As 𝑓 is a convex function, we can calculate both a lower bound and an upper bound on min𝑓(𝜌).

Winick,  Lütkenhaus, Coles, Quantum 2, 77 (2018)

Coles, Metodiev, Lütkenhaus, Nat. Commun. 7, 11712 (2016)
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Dimension reduction by flag-state squasher
• Key observation: Each POVM element 𝑀𝑦

𝐵 , 𝑦 ∈ 1,2, … , 𝐽 , is block-diagonal with respect 

to various photon-number subspaces.

• For a photon-number cutoff 𝑘  (𝑛 ≤ 𝑘)- and (𝑛 > 𝑘)-photon subspaces

Original POVM: 

𝑀𝑦
𝐵=

𝑀𝑦,𝑛≤𝑘
𝐵 0

0 𝑀𝑦,𝑛>𝑘
𝐵

Squashed POVM:       

෩𝑀𝑦
෨𝐵 =

𝑀𝑦,𝑛≤𝑘
𝐵 0

0 | ۧ𝑦 |𝑦ۦ

For an arbitrary input state 𝝆𝑩, Tr (𝑴𝒚
𝑩𝝆𝑩) = Tr ( ෩𝑴𝒚

෩𝑩𝜦(𝝆𝑩)), ∀ 𝒚.

H𝑛≤𝑘

⊕

H𝑛>𝑘

r

𝑀𝑦,𝑛>𝑘
𝐵 | ۧ𝑦 |𝑦ۦ

Squasher 𝜦
⊕

H𝑛≤𝑘

H𝐽

 Two equivalent descriptions of the measurement process.  

 The description using the squasher Λ is pessimistic, as it allows Eve 
to completely learn Bob’s outcome when 𝑛 > 𝑘. 

 A lower bound on 𝑝𝑛≤𝑘 is required when using the squasher Λ.

Infinite 
dimensional 

Finite 
dimensional 

Bob Bob
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H𝑛≤𝑘

Step 1:  Reducing the dimension

Step 2:  Bounding the photon-number distribution

Overview of our method

min
𝜌𝐴෩𝐵

𝐷 𝒢 𝜌𝐴 ෨𝐵 ||𝒵(𝒢 𝜌𝐴 ෨𝐵 )

൞

𝜌𝐴 ෨𝐵 ≥ 0, Tr 𝜌𝐴 ෨𝐵 = 1

Tr (𝑀𝑥
𝐴 ⊗ ෩𝑀𝑦

෨𝐵 𝜌𝐴 ෨𝐵)=𝑝𝐴𝐵 𝑥, 𝑦

Tr(Π≤𝑘𝜌𝐴 ෨𝐵) ≥ 𝑏𝑘

Accordingly, we need only to solve a finite-dimensional convex optimization problem,
and so we can obtain non-trivial lower bounds of the secret key rate.     

Our key-rate calculation

*𝜌𝐴 ෨𝐵 is finite-dimensional;

* The operators ෩𝑀𝑦
෨𝐵 depend

on efficiency mismatch.

* Π≤𝑘 is the projector onto 
the (≤-𝑘)-photon subspace. 

H𝑛≤𝑘

⊕
H𝑛>𝑘

r

𝑀𝑦,𝑛>𝑘
𝐵 | ۧ𝑦 |𝑦ۦ

Squasher 𝜦
⊕
H𝐽

Infinite 
dimensional 

Bob Bob
Finite 

dimensional 

H𝑛≤𝑘
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*Similar bounds have been used for security proofs of QKD without efficiency mismatch, see   
[Lütkenhaus, PRA 59, 3301 (1999) and Koashi et al., arXiv:0804.0891].

*We use the bounds established in [Y Z and N. Lütkenhaus, PRA 95, 042319 (2017)] for  
entanglement verification with efficiency mismatch.  An alternative bound for active detection 
with efficiency mismatch was recently derived by Trushechkin, arXiv:2004.07809. 

Photon-number distribution bounds
• Let 𝑇 be an observable that depends on both the photon number 𝑛 and the efficiency

mismatch (e.g., double click or cross click). 

• 𝑇 is block-diagonal. WLOG 𝜌𝐴𝐵 is block-diagonal, i.e., 𝜌𝐴𝐵= σ𝑛=0
∞ 𝑝𝑛 𝜌𝐴𝐵

𝑛
.

𝑝𝑛 --- the probability that the system arriving at Bob has 𝑛 photons. 

If we can find 𝑛-dependent bounds

𝑡obs,𝑛 = Tr (𝜌𝐴𝐵
𝑛

𝑇)≥ ቐ
𝑡obs, 𝑛≤𝑘

min , ∀𝑛 ≤ 𝑘,

𝑡obs, 𝑛>𝑘
min , ∀𝑛 > 𝑘,

then we have 

𝑡obs = σ𝑛=0
∞ 𝑝𝑛 Tr 𝜌𝐴𝐵

𝑛
𝑇 ≥ 𝑝𝑛≤𝑘𝑡obs, 𝑛≤𝑘

min + 1 − 𝑝𝑛≤𝑘 𝑡obs, 𝑛>𝑘
min .

𝑝𝑛≤𝑘 ≥
𝑡obs, 𝑛>𝑘

min − 𝑡obs

𝑡obs, 𝑛>𝑘
min − 𝑡obs, 𝑛≤𝑘

min
.𝑡obs, 𝑛≤𝑘

min is less than 𝑡obs, 𝑛>𝑘
min
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PR PBS

H/D

V/A
Mode H/D V/A

1 𝜂1=1 𝜂2=𝜂

2 𝜂2=𝜂 𝜂1=1

Efficiency mismatch model considered 

Random bit b

𝑝𝑛≤𝑘 for active detection

 The observable 𝑇 can be the double-click operator 𝐷 or the effective-error operator.  

𝑑obs,𝑛 = Tr (𝜌𝐴𝐵
𝑛

𝐷)≥ ቐ
𝜂

2
1 − 22−𝑛 , 𝑛 is even;

𝜂

2
1 − 21−𝑛 , 𝑛 is odd.

Photon number 𝑛

𝜂=1, numerical

𝜂=0.2, numerical

𝜂=1, analytical

𝜂=0.2, analytical

𝑑
o

b
s,

𝑛
m

in

*The numerical results are obtained by solving SDPs 
[Y Z and N. Lütkenhaus, PRA 95, 042319 (2017)].

*The analytical bounds are motivated and improve
the results in [Trushechkin, arXiv:2004.07809]. 

Due to the monotonic behavior of 𝑑obs, 𝑛
min , 

𝑝𝑛≤𝑘 ≥
𝑑obs, 𝑘+1

min − 𝑑obs

𝑑obs, 𝑘+1
min

, ∀𝑘.

*Our method works for arbitrary, characterized efficiency mismatch. 
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50/50 BS

PBSH/V

PBSD/A

A

V

D

H Mode H V D A

1 𝜂1=1 𝜂2=𝜂 𝜂2=𝜂 𝜂2=𝜂

2 𝜂2=𝜂 𝜂1=1 𝜂2=𝜂 𝜂2=𝜂

3 𝜂2=𝜂 𝜂2=𝜂 𝜂1=1 𝜂2=𝜂

4 𝜂2=𝜂 𝜂2=𝜂 𝜂2=𝜂 𝜂1=1

Efficiency mismatch model considered 

𝑝𝑛≤𝑘 for passive detection

 The observable 𝑇 can be the cross-click operator 𝐶.  

Photon number 𝑛

𝑐 o
b

s,
𝑛

m
in

𝜂=1

𝜂=0.8

𝜂=0.6

𝜂=0.4

𝜂=0.2

*The numerical results are obtained by solving SDPs 
[Y Z and N. Lütkenhaus, PRA 95, 042319 (2017)]. 

*The numerical bounds coincide with the analytical ones.

Due to the monotonic behavior of 𝑐obs, 𝑛
min ,

𝑝𝑛≤𝑘 ≥
𝑐obs, 𝑘+1

min − 𝑐obs

𝑐obs, 𝑘+1
min

, ∀𝑘.

𝑐obs,𝑛 = Tr (𝜌𝐴𝐵
𝑛

𝐶)≥ 1 + 1 − 𝜂 𝑛 − 2 1 −
𝜂

2

𝑛
.

*Our method works for arbitrary, characterized efficiency mismatch. 
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Data simulation
We simulate experimental observations 𝑝𝐴𝐵 𝑥, 𝑦 according to a toy model 

• at each round Alice prepares a signal state (according to the protocol),

• the channel between Alice and Bob is specified by 

𝑡 --- the single-photon transmission probability,

ω  --- the depolarization noise, 

𝑟 --- the multiphoton probability, i.e., the probability that a single photon 
randomly depolarized 𝑚 photons (in our simulation 𝑚 = 2),

• Bob performs a measurement  (according to the protocol). 

*If Bob’s detectors are coupled to several spatial-temporal modes, the optical signal is 
distributed uniformly at random over these modes. 

Task: Lower-bound the key rate given 𝑝𝐴𝐵 𝑥, 𝑦 and characterized efficiency mismatch.

*For this particular case, 𝑝𝐴𝐵 𝑥, 𝑦 are determined by the channel parameters (𝑡, ω, 𝑟)
as well as the detector model. 

*Our security analysis doesn’t require characterizing the channel between Alice and Bob (i.e., 
Eve’s attack).  Particularly, we don’t assume that the system received by Bob is finite-dimensional.
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Key rates with trusted loss 
(in the absence of mismatch)

Active detection 

Passive detection 

Identical efficiency 𝜂 of Bob’s detectors

K
ey

 r
at

e 
(b

it
s)

*For data simulation, 𝑡𝜂 = 0.1,
ω = 0.05, 𝑟 = 0.05.

*𝑝𝐴𝐵 𝑥, 𝑦 doesn’t change with 𝜂. 

For these particular results, our security analysis

• assumes that at most two photons are received by Bob (and so a flag-state squasher is not used).

• when 𝜂 = 1,  returns the same key rates as using the usual squashing model [Beaudry,  Moroder, 
Lütkenhaus, Phys. Rev. Lett. 101, 093601 (2008);  Tsurumaru and Tamaki, Phys. Rev. A 78, 032302 (2008)]. 

• suggests that more secret keys can be distilled when the trusted loss inside of Bob’s lab, (1 − 𝜂), 
increases and the untrusted loss over transmission,  1 − 𝑡 , decreases.  
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Key rates for active detection with efficiency mismatch

One mode, assuming ≤ 2 photons

𝜂2

K
ey

 r
at

e 
(b

it
s)

*For data simulation, 𝑡 = 0.5,
ω = 0.05, 𝑟 = 0.05.

Mode H/D V/A

1 𝜂1=0.2 𝜂2

Efficiency mismatch studied 

One mode,  flag-state squahser

• When applying a flag-state squasher, we choose the photon-number cutoff 𝑘 = 2.

• The larger the efficiency mismatch, the lower the key rate is.

• Making assumptions on Eve’s attack would overestimate the key rate. 
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Key rates for active detection with efficiency mismatch

One mode, assuming ≤ 2 photons

𝜂2

K
ey

 r
at

e 
(b

it
s)

*For data simulation, 𝑡 = 0.5,
ω = 0.05, 𝑟 = 0.05.

Mode H/D V/A

1 𝜂1=0.2 𝜂2

2 𝜂2 𝜂1=0.2

Efficiency mismatch studied 

One mode,  flag-state squahser

Two modes, flag-state squasher

• When applying a flag-state squasher, we choose the photon-number cutoff 𝑘 = 2.

• The larger the efficiency mismatch, the lower the key rate is.

• Making assumptions on Eve’s attack would overestimate the key rate. 

• Mode-dependent mismatch helps Eve to attack the QKD system. 
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Key rates for passive detection with efficiency mismatch

One mode, assuming ≤ 2 photons

𝜂2

K
ey

 r
at

e 
(b

it
s)

*For data simulation, 𝑡 = 0.5,
ω = 0.05, 𝑟 = 0.05.

Efficiency mismatch studied 

One mode,  no photon-# assumption

• When applying a flag-state squasher, we choose a photon-number cutoff
𝑘 = 2 (for one mode) or 𝑘 = 1 (for four modes).

• The larger the efficiency mismatch, the lower the key rate is.

• Making assumptions on Eve’s attack would overestimate the key rate. 

Mode H V D A

1 𝜂1=0.2 𝜂2=𝜂 𝜂2=𝜂 𝜂2=𝜂
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Key rates for passive detection with efficiency mismatch

One mode, assuming ≤ 2 photons

𝜂2

K
ey

 r
at

e 
(b

it
s)

*For data simulation, 𝑡 = 0.5,
ω = 0.05, 𝑟 = 0.05.

Efficiency mismatch studied 

One mode,  no photon-# assumption

Four modes,  no photon-# 
assumption

• When applying a flag-state squasher, we choose a photon-number cutoff
𝑘 = 2 (for one mode) or 𝑘 = 1 (for four modes).

• The larger the efficiency mismatch, the lower the key rate is.

• Making assumptions on Eve’s attack would overestimate the key rate. 

• Mode-dependent mismatch helps Eve to attack the QKD system. 

Mode H V D A

1 𝜂1=0.2 𝜂2=𝜂 𝜂2=𝜂 𝜂2=𝜂

2 𝜂2=𝜂 𝜂1=0.2 𝜂2=𝜂 𝜂2=𝜂

3 𝜂2=𝜂 𝜂2=𝜂 𝜂1=0.2 𝜂2=𝜂

4 𝜂2=𝜂 𝜂2=𝜂 𝜂2=𝜂 𝜂1=0.2
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Summary

• Constructed a flag-state squasher to reduce the system dimension.
*The flag-state squasher can be applied to other protocols, see Li and Lütkenhaus, 
arXiv:2007.08662.

• Established bounds on photon-number distribution directly from 
experimental observations.

• Proved the security of a prepare & measure BB84 protocol in the presence of 
efficiency mismatch without a photon-number limit. 

• Illustrated the individual effects of trusted loss and untrusted loss on the key 
rate. 

Finite key analysis can also be handled by numerical approach (see the talk 
“Numerical Calculations of Finite Key Rate for General Quantum Key 
Distribution Protocols” by Ian George).  
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Summary

• Constructed a flag-state squasher to reduce the system dimension.
*The flag-state squasher can be applied to other protocols, see Li and Lütkenhaus, 
arXiv:2007.08662.

• Established bounds on photon-number distribution directly from 
experimental observations.

• Proved the security of a prepare & measure BB84 protocol in the presence of 
efficiency mismatch without a photon-number limit. 

• Illustrated the individual effects of trusted loss and untrusted loss on the key 
rate. 

Finite key analysis can also be handled by numerical approach (see the talk 
“Numerical Calculations of Finite Key Rate for General Quantum Key 
Distribution Protocols” by Ian George).  

Thank you! yanbaoz@gmail.com


