Non-interactive classical verification of quantum computation

Gorjan Alagic

Andrew M. Childs

Alex B. Grilo

Shih-Han Hung

Verifiable quantum advantage

nature

Article | Published: 23 October 2019

Quantum supremacy using a programmable superconducting processor

Frank Arute, Kunal Arya, [...] John M. Martinis 🖂

Nature 574, 505–510(2019) Cite this article 742k Accesses 246 Citations 6011 Altmetric Metrics

Verifiable quantum advantage

nature

Article | Published: 23 October 2019

Quantum supremacy using a programmable superconducting processor

Frank Arute, Kunal Arya, [...] John M. Martinis 🖂

Nature 574, 505–510(2019) Cite this article 742k Accesses 246 Citations 6011 Altmetric Metrics

When a quantum cloud is available for remote access...

Verifiable quantum advantage

nature

Article | Published: 23 October 2019

Quantum supremacy using a programmable superconducting processor

Frank Arute, Kunal Arya, [...] John M. Martinis 🖂

 Nature
 574, 505–510(2019)
 Cite this article

 742k
 Accesses
 246
 Citations
 6011
 Altmetric
 Metrics

When a quantum cloud is available for remote access...

How do you know if you can trust it via classical communication (e.g., email messages)?

Interactive proofs/arguments

An interactive proof (or argument) system for language L is a protocol which is both complete and sound.

Completeness: for $x \in L_{yes}$,

Interactive proofs/arguments

An interactive proof (or argument) system for language L is a protocol which is both complete and sound.

Soundness: for $x \in L_{no}$,

An interactive proof (or argument) system for language L is a protocol which is both complete and sound.

It is sometimes desirable that the interaction conveys no information about the witness.

Zero knowledge: there exists a simulator S who outputs an indistinguishable view.

Testing quantum computers

How do we classically verify quantum computers when classical simulation is impossible?

Multiprover interactive proofs with pre-shared entanglements. [RUV13, M16, GKW15, HPDF15, FH15, NV17, CGJV19, G19]

Interactive proof systems with a limited quantum verifier. [B18, ABEM17, MHF18]

Interactive arguments with a bounded quantum prover. [M18]

An XZ verification protocol for BQP/QMA

Verifier(*H*):

 measures ρ in X or Z bases, and checks the parity of 2 qubits. Prover(H):

• prepares the ground state ρ and sends it.

For this approach to work [MHF18],

- the ground state energy of Hamiltonian $H = \sum_{i} p_{i} \prod_{i}$ is either $\leq a$ or $\geq b$ with $(b a) > n^{-c}$;
- for every problem L in BQP there is a corresponding Hamiltonian for every instance;
- for QMA, the prover is given access to a quantum witness.

The Mahadev protocol

Assuming LWE is hard against quantum adversaries, there is a 4-message protocol for BQP. [M18]

- Verifier publicizes the key pk, and keeps sk secret;
- tosses a random coin c;
- checks m = (b, x),
 - if c = 0, $f_{pk}(b, x) = y$;
 - if *c* = 1, the decryption of *b* or *y* is accepted to the XZ verification protocol.

- Prover prepares state $|\Psi\rangle = \sum_{b} \alpha_{b} |b\rangle |x\rangle |f_{pk}(b,x)\rangle$ and performs partial measurement;
- measures $|\psi_y\rangle$
 - if c = 0, in Z basis;
 - if c = 1, in X basis;
 - to get m.

The Mahadev protocol

Assuming LWE is hard against quantum adversaries, there is a 4-message protocol for BQP. [M18]

For this protocol to work,

- The key pairs (*pk*, *sk*) encode the bases.
- The function f_{pk} is either 2-to-1 or 1-to-1.
- Hard to prepare the preimage superposition for a fixed y without sk.

There exists an instantiation based on plain LWE. [M18] The soundness error is constant.

Question

Can quantum computation be certified with a single message, up to instance-independent preprocessing?

Question

Can quantum computation be certified with a single message, up to instance-independent preprocessing?

Question

Can certified quantum computation be performed in zero knowledge?

Question

Can quantum computation be certified with a single message, up to instance-independent preprocessing?

Question

Can certified quantum computation be performed in zero knowledge?

Question

Can quantum computation be certified with a single message, up to instance-independent preprocessing?

Question

Can certified quantum computation be performed in zero knowledge?

Question

Can quantum computation be certified with a single message, up to instance-independent preprocessing?

Question

Can certified quantum computation be performed in zero knowledge?

Question

Can quantum computation be certified with a single message, up to instance-independent preprocessing?

Question

Can certified quantum computation be performed in zero knowledge?

Question

Can quantum computation be certified with a single message, up to instance-independent preprocessing?

Question

Can certified quantum computation be performed in zero knowledge?

Question

Can quantum computation be certified with a single message, up to instance-independent preprocessing?

Question

Can certified quantum computation be performed in zero knowledge?

Theorem

The key sampling can be preprocessed prior to verification.

Theorem

The key sampling can be preprocessed prior to verification.

Proof.

• Sample bases S randomly and the keys according to the bases.

Theorem

The key sampling can be preprocessed prior to verification.

- Sample bases S randomly and the keys according to the bases.
- V samples the real bases S' according to the Hamiltonian.

Theorem

The key sampling can be preprocessed prior to verification.

- Sample bases S randomly and the keys according to the bases.
- V samples the real bases S' according to the Hamiltonian.
- If $S \neq S'$, the verifier accepts; otherwise run the same verification protocol as before.

Theorem

The key sampling can be preprocessed prior to verification.

- Sample bases S randomly and the keys according to the bases.
- V samples the real bases S' according to the Hamiltonian.
- If $S \neq S'$, the verifier accepts; otherwise run the same verification protocol as before.
- Since the Hamiltonian is 2-local, with probability 1/4 they match ⇒ the gap decreases by a factor of 1/4.

Hardness amplification

Given a protocol Π with small completeness-soundness gap, two possibilities to amplify the gap:

Given a protocol Π with small completeness-soundness gap, two possibilities to amplify the gap:

 Sequential repetition Run ∏ sequentially, accept if many rounds are accepted.
 ⊙ Always amplifies the gap.
 ⊙ Requires more interaction. Given a protocol Π with small completeness-soundness gap, two possibilities to amplify the gap:

- Sequential repetition Run ∏ sequentially, accept if many rounds are accepted.
 ☺ Always amplifies the gap.
 ☺ Requires more interaction.
- Parallel repetition (PR)
 - Run Π in parallel, accept if many copies are accepted.
 - © Additional interaction is not required.
 - $\ensuremath{\textcircled{}}$ Not always reduce the soundness error.

Given a protocol Π with small completeness-soundness gap, two possibilities to amplify the gap:

- Sequential repetition
 - Run Π sequentially, accept if many rounds are accepted.
 - $\ensuremath{\textcircled{}}$ Always amplifies the gap.
 - $\ensuremath{\textcircled{}}$ Requires more interaction.
- Parallel repetition (PR)
 - Run Π in parallel, accept if many copies are accepted.
 - © Additional interaction is not required.
 - $\ensuremath{\textcircled{}}$ Not always reduce the soundness error.
 - There exists a protocol for which the soundness error stays the same using two-fold PR.

Theorem

The soundness error of a k-fold protocol is $2^{-k} + \epsilon$ for negligible ϵ .

 $^{^1 \}text{In}$ the sense that $\mathcal P$ is quantum efficient and only knows the public keys.

Theorem

The soundness error of a k-fold protocol is $2^{-k} + \epsilon$ for negligible ϵ .

Proof.

• $\mathcal P$ prepares a quantum state $\rho_{\it pk},$ fixed by $\mathcal V$ by requesting a partial measurement.

 $^{^1 {\}rm In}$ the sense that ${\cal P}$ is quantum efficient and only knows the public keys.

Theorem

The soundness error of a k-fold protocol is $2^{-k} + \epsilon$ for negligible ϵ .

Proof.

- \mathcal{P} prepares a quantum state ρ_{pk} , fixed by \mathcal{V} by requesting a partial measurement.
- After the challenges c = (c₁,..., c_k) are sent, (P, V) effectively applies an arbitrary¹ binary measurement {M_{sk,s,c}, I M_{sk,s,c}}. These projectors are nearly orthogonal w.r.t. ρ_{pk}

$$\forall a \neq b, \mathbb{E}_{pk,sk,s}[tr(\rho_{pk}\{M_{sk,s,a}, M_{sk,s,b}\})] \leq \mathsf{negl}(n).$$

Otherwise, there exists an adversary who wins the single-copy protocol w.p. close to 1.

¹In the sense that \mathcal{P} is quantum efficient and only knows the public keys.

The soundness error of a k-fold protocol is $2^{-k} + \epsilon$ for negligible ϵ .

Proof.

- \mathcal{P} prepares a quantum state ρ_{pk} , fixed by \mathcal{V} by requesting a partial measurement.
- After the challenges c = (c₁,..., c_k) are sent, (P, V) effectively applies an arbitrary¹ binary measurement {M_{sk,s,c}, I M_{sk,s,c}}. These projectors are nearly orthogonal w.r.t. ρ_{pk}

$$\forall a \neq b, \mathbb{E}_{pk,sk,s}[tr(\rho_{pk}\{M_{sk,s,a}, M_{sk,s,b}\})] \leq \mathsf{negl}(n).$$

Otherwise, there exists an adversary who wins the single-copy protocol w.p. close to 1.

Thus any prover can win at most a single challenge (out of 2^k possibilities).

 $^{^1 {\}rm In}$ the sense that ${\cal P}$ is quantum efficient and only knows the public keys.

Round reduction

The Fiat-Shamir transform turns a Σ -protocol (3-message, public-coin), into a non-interactive protocol.

In the QROM, FS is secure with an $O(q^2)$ loss against a *q*-query adversary to the random oracle.

Theorem

The FS-transformed BQP verification has negligible soundness error.

Proof.

 Assuming the existence of an FS-breaking adversary A, there must be a noticeable fraction of bad keys (pk*, sk*).

Theorem

The FS-transformed BQP verification has negligible soundness error.

- Assuming the existence of an FS-breaking adversary A, there must be a noticeable fraction of bad keys (pk*, sk*).
- Conditioned on these keys, A(pk*) is a FS-breaking adversary to a transformed Σ-protocol.

Theorem

The FS-transformed BQP verification has negligible soundness error.

- Assuming the existence of an FS-breaking adversary A, there must be a noticeable fraction of bad keys (pk*, sk*).
- Conditioned on these keys, A(pk*) is a FS-breaking adversary to a transformed Σ-protocol.
- There exists an adversary B(pk*) who wins the Σ-protocol w.p. arbitrarily close to 1, using the same reduction as [DFMS19].

Theorem

The FS-transformed BQP verification has negligible soundness error.

- Assuming the existence of an FS-breaking adversary A, there must be a noticeable fraction of bad keys (pk*, sk*).
- Conditioned on these keys, A(pk*) is a FS-breaking adversary to a transformed Σ-protocol.
- There exists an adversary B(pk*) who wins the Σ-protocol w.p. arbitrarily close to 1, using the same reduction as [DFMS19].
- $\bullet\,$ The adversary ${\cal B}$ breaks the original protocol.

Classical NIZK for BQP/QMA

There exists a classical NIZK for QMA in the QROM, assuming the existence of a circularly secure FHE and a NIZK for NP.

Sketch of construction.

There exists a classical NIZK for QMA in the QROM, assuming the existence of a circularly secure FHE and a NIZK for NP.

Sketch of construction.

• In the setup phase, the prover gets the encryption of *sk*, which is part of the instance to some NP relation.

There exists a classical NIZK for QMA in the QROM, assuming the existence of a circularly secure FHE and a NIZK for NP.

Sketch of construction.

- In the setup phase, the prover gets the encryption of *sk*, which is part of the instance to some NP relation.
- General The first message is obtained by querying f_{pk} on the witness.
 ⇒ Prover encrypts the witness state with quantum one-time pad
 and commits to the keys.

There exists a classical NIZK for QMA in the QROM, assuming the existence of a circularly secure FHE and a NIZK for NP.

Sketch of construction.

- In the setup phase, the prover gets the encryption of *sk*, which is part of the instance to some NP relation.
- ③ The prover gets accepted by sending the openings and the measurement outcomes.
 - \Rightarrow Viewing these as the witness to the NP relation.
 - \Rightarrow Sending a homomorphically evaluated NIZK proof.

We showed classical verification of quantum computation can be performed non-interactively and in zero-knowledge.

We showed classical verification of quantum computation can be performed non-interactively and in zero-knowledge.

Open questions:

We showed classical verification of quantum computation can be performed non-interactively and in zero-knowledge.

Open questions:

• Can we prove security when the oracle is instantiated with a concrete hash function?

We showed classical verification of quantum computation can be performed non-interactively and in zero-knowledge.

Open questions:

- Can we prove security when the oracle is instantiated with a concrete hash function?
- A parallel repetition theorem for any quantum prover interactive arguments?

We showed classical verification of quantum computation can be performed non-interactively and in zero-knowledge.

Open questions:

- Can we prove security when the oracle is instantiated with a concrete hash function?
- A parallel repetition theorem for any quantum prover interactive arguments?
- Simpler NIZK arguments for BQP/QMA?