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Verifiable quantum advantage

When a quantum cloud is available for remote access...

How do you know if you can trust it via classical communication (e.g.,

email messages)?
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Interactive proofs/arguments

An interactive proof (or argument) system for language L is a protocol

which is both complete and sound.

Completeness: for x ∈ Lyes ,

V (x) P(x ,w)

accept
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Interactive proofs/arguments

An interactive proof (or argument) system for language L is a protocol

which is both complete and sound.

It is sometimes desirable that the interaction conveys no information

about the witness.

Zero knowledge: there exists a simulator S who outputs an

indistinguishable view.

V (x) P(x ,w)

≈ S(V , x)
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Testing quantum computers

How do we classically verify quantum computers when classical

simulation is impossible?

Multiprover interactive proofs with

pre-shared entanglements.

[RUV13, M16, GKW15, HPDF15,

FH15, NV17, CGJV19, G19]

Interactive proof systems with

a limited quantum verifier.

[B18, ABEM17, MHF18]

≤ LWE

Interactive arguments with

a bounded quantum prover. [M18]
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An XZ verification protocol for BQP/QMA

Verifier(H):

• measures ρ in X or Z bases,

and checks the parity of 2

qubits.

Prover(H):

• prepares the ground state ρ

and sends it.

For this approach to work [MHF18],

• the ground state energy of Hamiltonian H = ∑i piΠi is either ≤ a or

≥ b with (b − a) > n−c ;

• for every problem L in BQP there is a corresponding Hamiltonian for

every instance;

• for QMA, the prover is given access to a quantum witness.
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The Mahadev protocol

≤ LWE
m

c

y

pk

Assuming LWE is hard against quantum adversaries, there is a 4-message

protocol for BQP. [M18]

• Verifier publicizes the key

pk , and keeps sk secret;

• tosses a random coin c ;

• checks m = (b, x),

• if c = 0, fpk(b, x) = y ;

• if c = 1, the decryption of

b or y is accepted to the

XZ verification protocol.

• Prover prepares state

∣Ψ⟩ = ∑b αb ∣b⟩∣x⟩∣fpk(b, x)⟩

and performs partial

measurement;

• measures ∣ψy ⟩

• if c = 0, in Z basis;

• if c = 1, in X basis;

to get m.
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The Mahadev protocol

≤ LWE
m

c

y

pk

Assuming LWE is hard against quantum adversaries, there is a 4-message

protocol for BQP. [M18]

For this protocol to work,

• The key pairs (pk, sk) encode the bases.

• The function fpk is either 2-to-1 or 1-to-1.

• Hard to prepare the preimage superposition for a fixed y without sk .

There exists an instantiation based on plain LWE. [M18]

The soundness error is constant.
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Overview of our protocols

Question

Can quantum computation be certified with a single message, up to

instance-independent preprocessing?

Question

Can certified quantum computation be performed in zero knowledge?

Our contributions:
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Instance independent setup



Instance independent setup

≤ LWE

sk pk

m

c

y

Theorem

The key sampling can be preprocessed prior to verification.

Proof.

• Sample bases S randomly and the keys according to the bases.

• V samples the real bases S ′ according to the Hamiltonian.

• If S ≠ S ′, the verifier accepts; otherwise run the same verification

protocol as before.

• Since the Hamiltonian is 2-local, with probability 1/4 they match

⇒ the gap decreases by a factor of 1/4.
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A parallel repetition theorem



Hardness amplification

Given a protocol Π with small completeness-soundness gap,

two possibilities to amplify the gap:

• Sequential repetition

Run Π sequentially, accept if many rounds are accepted.

, Always amplifies the gap.

/ Requires more interaction.

• Parallel repetition (PR)

Run Π in parallel, accept if many copies are accepted.

, Additional interaction is not required.

/ Not always reduce the soundness error.

• There exists a protocol for which the soundness error stays the same

using two-fold PR.
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A parallel repetition theorem

Theorem

The soundness error of a k-fold protocol is 2−k + ε for negligible ε.

Proof.

• P prepares a quantum state ρpk , fixed by V by requesting a partial

measurement.

• After the challenges c = (c1, . . . , ck) are sent, (P,V) effectively

applies an arbitrary1 binary measurement {Msk,s,c , I −Msk,s,c}.

These projectors are nearly orthogonal w.r.t. ρpk

∀a ≠ b, E
pk,sk,s

[tr(ρpk{Msk,s,a,Msk,s,b})] ≤ negl(n).

Otherwise, there exists an adversary who wins the single-copy

protocol w.p. close to 1.

• Thus any prover can win at most a single challenge (out of 2k

possibilities).

1In the sense that P is quantum efficient and only knows the public keys.
13
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Round reduction



The Fiat-Shamir paradigm

The Fiat-Shamir transform turns a Σ-protocol (3-message, public-coin),

into a non-interactive protocol.

In the QROM, FS is secure with an O(q2) loss against a q-query

adversary to the random oracle.

γ

β
α

⇓

α,β = H(x , α), γ

14



Round reduction for BQP verification

≤ LWE

sk pk

y ,m

Theorem

The FS-transformed BQP verification has negligible soundness error.

Proof.

• Assuming the existence of an FS-breaking adversary A, there must

be a noticeable fraction of bad keys (pk∗, sk∗).

• Conditioned on these keys, A(pk∗) is a FS-breaking adversary to a

transformed Σ-protocol.

• There exists an adversary B(pk∗) who wins the Σ-protocol w.p.

arbitrarily close to 1, using the same reduction as [DFMS19].

• The adversary B breaks the original protocol.

15
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Classical NIZK for BQP/QMA



Making the protocol zero-knowledge

Theorem

There exists a classical NIZK for QMA in the QROM, assuming the

existence of a circularly secure FHE and a NIZK for NP.

Sketch of construction.

• In the setup phase, the prover gets the encryption of sk, which is

part of the instance to some NP relation.

• / The first message is obtained by querying fpk on the witness.

⇒ Prover encrypts the witness state with quantum one-time pad

and commits to the keys.

• / The prover gets accepted by sending the openings and the

measurement outcomes.

⇒ Viewing these as the witness to the NP relation.

⇒ Sending a homomorphically evaluated NIZK proof.
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Summary

We showed classical verification of quantum computation can be

performed non-interactively and in zero-knowledge.

Mahadev

protocol

Instance-

independent

setup

Parallel

repetition

Round

reduction

Zero-

knowledge

Open questions:

• Can we prove security when the oracle is instantiated with a

concrete hash function?

• A parallel repetition theorem for any quantum prover interactive

arguments?

• Simpler NIZK arguments for BQP/QMA?
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