# Efficient Simulation of Random States and Random Unitaries

Gorjan Alagic, Christian Majenz and Alexander Russell

QCrypt 2020, in Cyberspace







#### Results — overview

- We study the **simulation of random quantum objects**, i.e. random quantum states and random unitary operations
- We develop a **theory of** their **stateful simulation**, a quantum analogue of "lazy sampling"
- For random states, we develop an efficient protocol for stateful simulation
- For random unitaries, we show that simulation can be done in polynomial space
- As an **application**, we design a **quantum money** scheme that is unconditionally unforgeable and untraceable.

# Introduction

#### Randomness...

...is extremely useful. Applications:

- All of cryptography
- Monte Carlo simulation
- Randomized algorithms

...



# Easy example: random string

Random element  $x \in_R \{0,1\}^n$ 

# Easy example: random string

Random element  $x \in_R \{0,1\}^n$ 

|       | Randomness cost | Runtime limit<br>distinguisher |
|-------|-----------------|--------------------------------|
| Exact | n               | No                             |

# Easy example: random string

Random element  $x \in_R \{0,1\}^n$ 

|                           | Randomness cost | Runtime limit<br>distinguisher |
|---------------------------|-----------------|--------------------------------|
| Exact                     | n               | No                             |
| Pseudorandom<br>generator | poly(λ)         | poly(λ)                        |

| Oracle simulation for $f$ | Randomness cost | Stateful simulation | Limit distinguisher |
|---------------------------|-----------------|---------------------|---------------------|
| Exact                     | $n \cdot 2^m$   | No                  | None                |

Function  $f: \{0,1\}^m \to \{0,1\}^n$  such that  $f(x) \in_R \{0,1\}^n$  independently

| Oracle simulation for $f$           | Randomness cost | Stateful simulation | Limit distinguisher |
|-------------------------------------|-----------------|---------------------|---------------------|
| Exact                               | $n \cdot 2^m$   | No                  | None                |
| <i>t</i> -wise independent function | $O(t \cdot n)$  | No                  | $q \leq t$          |

# of queries

| Oracle simulation for $f$           | Randomness cost | Stateful simulation | Limit distinguisher       |
|-------------------------------------|-----------------|---------------------|---------------------------|
| Exact                               | $n \cdot 2^m$   | No                  | None                      |
| <i>t</i> -wise independent function | $O(t \cdot n)$  | No                  | $q \leq t$                |
| Pseudorandom<br>function            | poly(λ)         | No                  | $time \leq poly(\lambda)$ |

| Oracle simulation for $f$           | Randomness cost | Stateful simulation | Limit distinguisher       |
|-------------------------------------|-----------------|---------------------|---------------------------|
| Exact                               | $n \cdot 2^m$   | No                  | None                      |
| <i>t</i> -wise independent function | $O(t \cdot n)$  | No                  | $q \leq t$                |
| Pseudorandom<br>function            | $poly(\lambda)$ | No                  | $time \leq poly(\lambda)$ |
| "Lazy sampling"                     | $q \cdot n$     | Yes                 | None                      |

| Oracle simulation for $f$           | Randomness cost                                         | Stateful simulation | Limit distinguisher       |
|-------------------------------------|---------------------------------------------------------|---------------------|---------------------------|
| Exact                               | $n \cdot 2^m$                                           | No                  | None                      |
| <i>t</i> -wise independent function | Information-theoretically secure message authentication |                     | ge authentication         |
| Pseudorandom<br>function            | $poly(\lambda)$                                         | No                  | $time \leq poly(\lambda)$ |
| "Lazy sampling"                     | $q \cdot n$                                             | Yes                 | None                      |

| Oracle simulation for $f$           | Randomness cost                                         | Stateful simulation | Limit distinguisher |
|-------------------------------------|---------------------------------------------------------|---------------------|---------------------|
| Exact                               | $n \cdot 2^m$                                           | No                  | None                |
| <i>t</i> -wise independent function | Information-theoretically secure message authentication |                     |                     |
| Pseudorandom<br>function            | Computationally secure symmetric-key crypto             |                     | ic-key crypto       |
| "Lazy sampling"                     | $q \cdot n$                                             | Yes                 | None                |

| Oracle simulation for $f$           | Randomness cost                                         | Stateful simulation    | Limit distinguisher |
|-------------------------------------|---------------------------------------------------------|------------------------|---------------------|
| Exact                               | $n \cdot 2^m$                                           | No                     | None                |
| <i>t</i> -wise independent function | Information-theoretically secure message authentication |                        |                     |
| Pseudorandom<br>function            | Computationally secure symmetric-key crypto             |                        |                     |
| "Lazy sampling"                     | Random oracle r                                         | model security (e.g. i | ndifferentiability) |

Quantum state: unit vector

$$|\phi\rangle \in S \subset \mathbb{C}^{2^n}$$



Sphere

Quantum state: unit vector

$$|\phi\rangle \in S \subset \mathbb{C}^{2^n}$$



Sphere

Strictly speaking:

$$|\phi\rangle \in P_{2^{n}-1}(\mathbb{C}),$$

projective space

Quantum state: unit vector

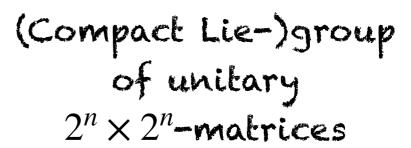
$$|\phi\rangle \in S \subset \mathbb{C}^{2^n}$$



#### Sphere

Strictly speaking:  $|\phi\rangle\in P_{2^n-1}(\mathbb{C}),$  projective space

Quantum operation: unitary matrix  $U \in \mathrm{U}(2^n) \subset \mathbb{C}^{2^n \times 2^n}$ 



Quantum state: unit vector

$$|\phi\rangle \in S \subset \mathbb{C}^{2^n}$$



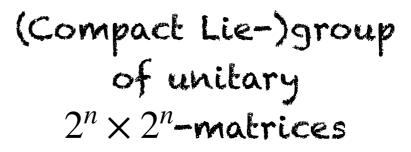
Sphere

Strictly speaking:

$$|\phi\rangle \in P_{2^{n}-1}(\mathbb{C}),$$

projective space

Quantum operation: unitary matrix  $U \in \mathrm{U}(2^n) \subset \mathbb{C}^{2^n \times 2^n}$ 



Really nice mathematical objects with a natural notion of a uniform distribution!

Quantum state: unit vector

$$|\phi\rangle \in S \subset \mathbb{C}^{2^n}$$



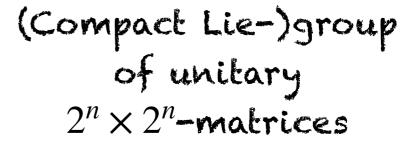
Sphere

Strictly speaking:

$$|\phi\rangle \in P_{2^{n}-1}(\mathbb{C}),$$

projective space

Quantum operation: unitary matrix  $U \in \mathrm{U}(2^n) \subset \mathbb{C}^{2^n \times 2^n}$ 



Really nice mathematical objects with a natural notion of a uniform distribution!

Haar measure

No-cloning principle: quantum information cannot be copied.

No-cloning principle: quantum information cannot be copied.

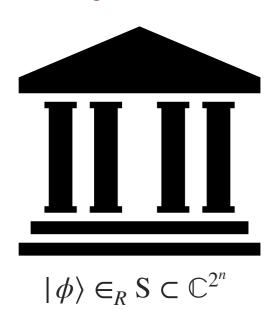
Oldest idea in quantum crypto: Let's make money out of it!



No-cloning principle: quantum information cannot be copied.

Oldest idea in quantum crypto: Let's make money out of it!

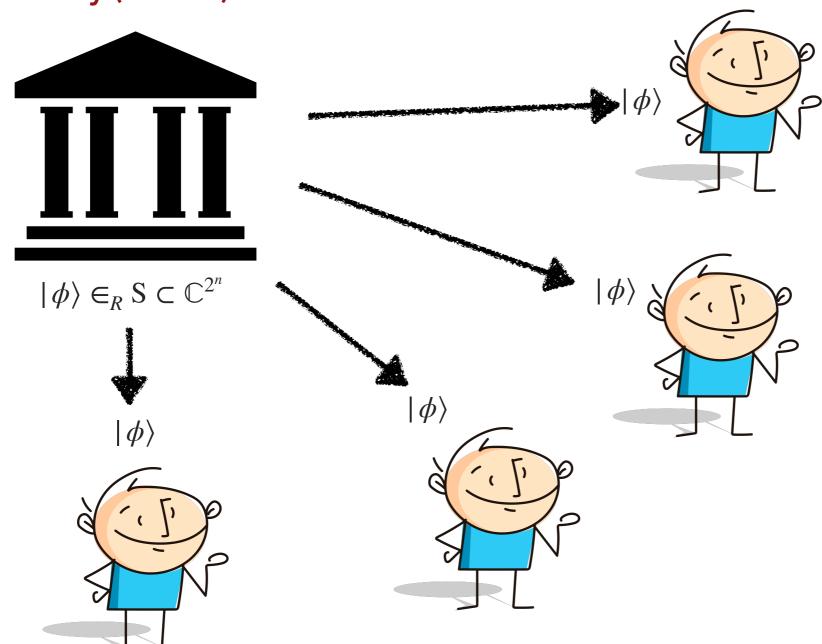
#### Haar money (JLS '19):



No-cloning principle: quantum information cannot be copied.

Oldest idea in quantum crypto: Let's make money out of it!

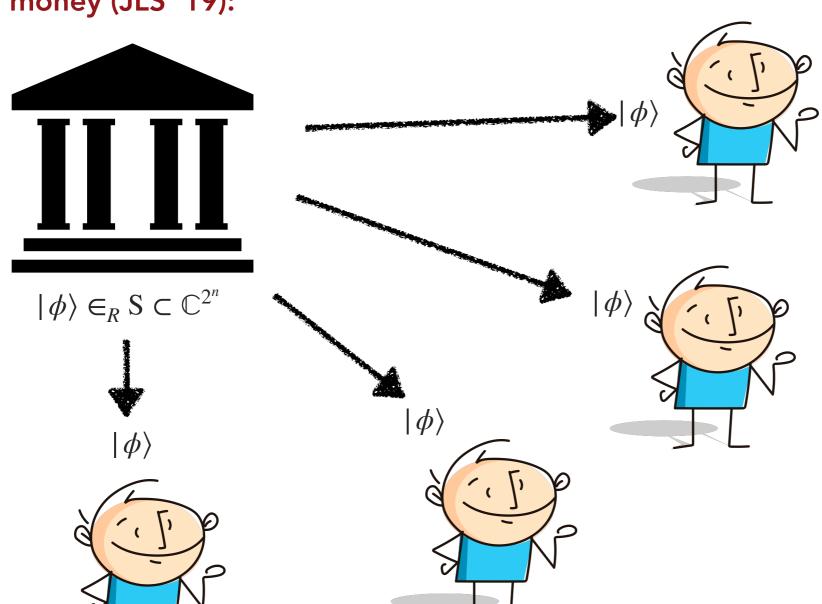
#### Haar money (JLS '19):



No-cloning principle: quantum information cannot be copied.

Oldest idea in quantum crypto: Let's make money out of it!

#### Haar money (JLS '19):

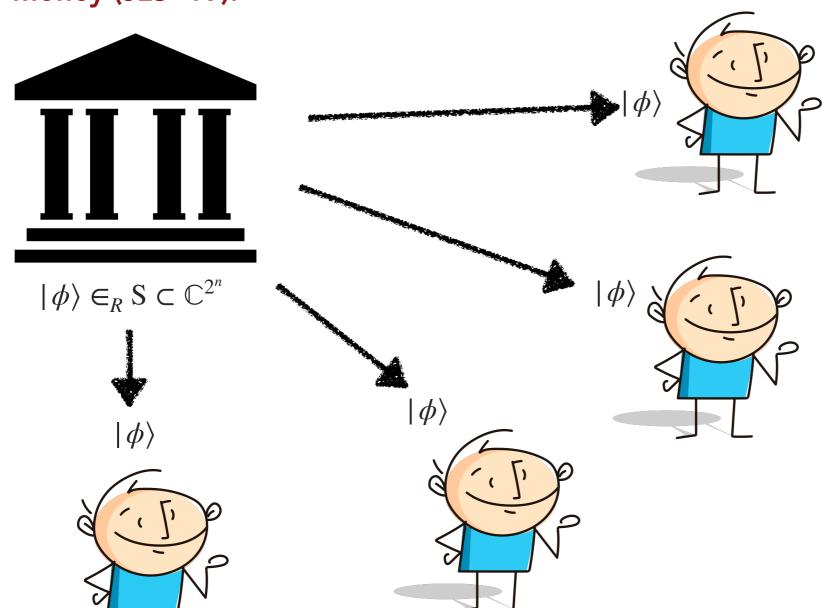


Unforgeable **√** 

No-cloning principle: quantum information cannot be copied.

Oldest idea in quantum crypto: Let's make money out of it!

#### Haar money (JLS '19):

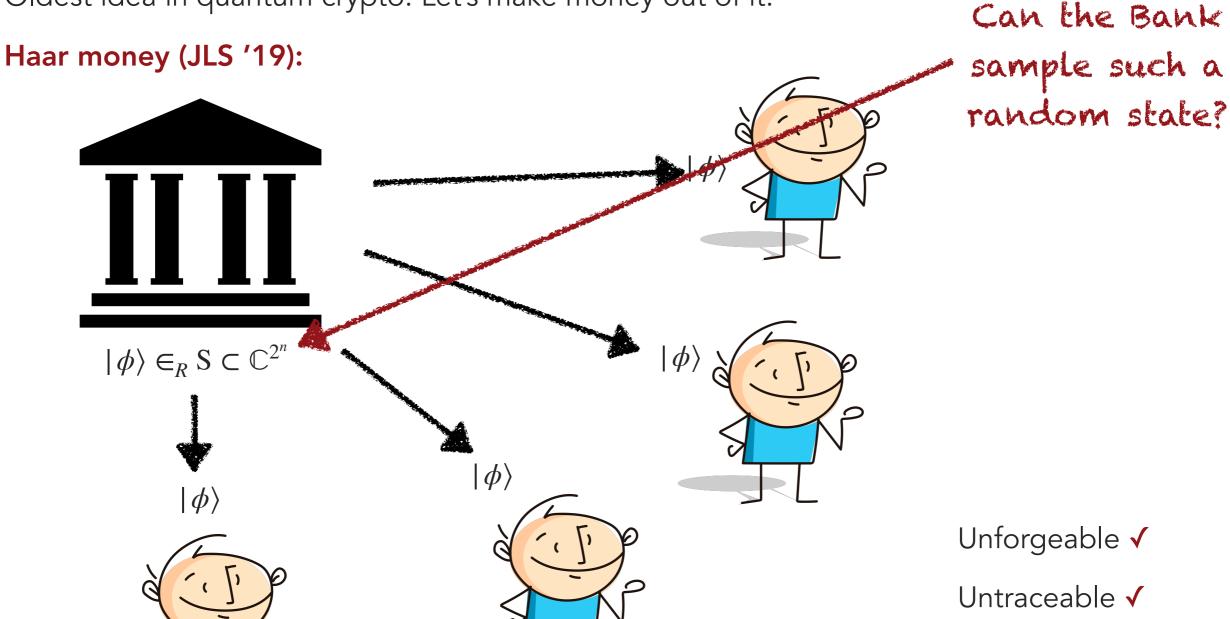


Unforgeable **√** 

Untraceable **✓** 

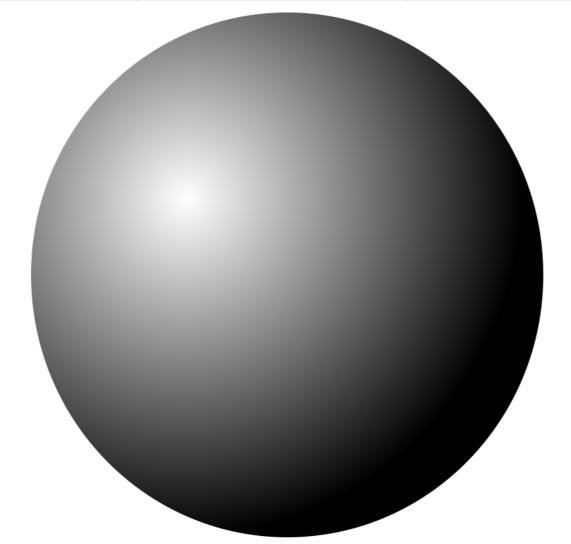
No-cloning principle: quantum information cannot be copied.

Oldest idea in quantum crypto: Let's make money out of it!



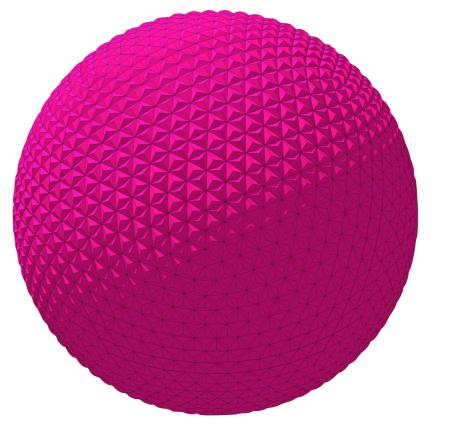
# Simulation of random quantum objects

| Oracle simulation for $1\mapsto  \phi\rangle$ | Randomness/<br>Memory cost | Simulation             | Limit distinguisher |
|-----------------------------------------------|----------------------------|------------------------|---------------------|
| Exact                                         |                            | inefficient, stateless | None                |



| Oracle simulation for $1\mapsto  \phi\rangle$ | Randomness/<br>Memory cost           | Simulation             | Limit distinguisher      |
|-----------------------------------------------|--------------------------------------|------------------------|--------------------------|
| Exact                                         |                                      | inefficient, stateless | None # of                |
| $oldsymbol{\mathcal{E}}$ -Net                 | $O(\log{(1/\varepsilon)} \cdot 2^n)$ | inefficient, stateless | $q \le O(1/\varepsilon)$ |





| Oracle simulation for $1\mapsto  \phi\rangle$ | Randomness/<br>Memory cost           | Simulation             | Limit distinguisher      |
|-----------------------------------------------|--------------------------------------|------------------------|--------------------------|
| Exact                                         |                                      | inefficient, stateless | None                     |
| $oldsymbol{\mathcal{E}}$ -Net                 | $O(\log{(1/\varepsilon)} \cdot 2^n)$ | inefficient, stateless | $q \le O(1/\varepsilon)$ |
| State <i>t</i> -design                        | poly(n, t)                           | efficient, stateless   | $q \leq t$               |

| Oracle simulation for $1\mapsto  \phi\rangle$      | Randomness/<br>Memory cost           | Simulation             | Limit distinguisher       |
|----------------------------------------------------|--------------------------------------|------------------------|---------------------------|
| Exact                                              |                                      | inefficient, stateless | None                      |
| $oldsymbol{\mathcal{E}}$ -Net                      | $O(\log{(1/\varepsilon)} \cdot 2^n)$ | inefficient, stateless | $q \le O(1/\varepsilon)$  |
| State <i>t</i> -design                             | poly(n, t)                           | efficient, stateless   | $q \leq t$                |
| Pseudorandom<br>quantum state<br>(JLS '19, BS '20) | $poly(\lambda)$                      | efficient, stateless   | $time \leq poly(\lambda)$ |

| Oracle simulation for $1\mapsto  \phi\rangle$      | Randomness/<br>Memory cost           | Simulation             | Limit distinguisher       |
|----------------------------------------------------|--------------------------------------|------------------------|---------------------------|
| Exact                                              |                                      | inefficient, stateless | None                      |
| $oldsymbol{\mathcal{E}}$ -Net                      | $O(\log{(1/\varepsilon)} \cdot 2^n)$ | inefficient, stateless | $q \le O(1/\varepsilon)$  |
| State <i>t</i> -design                             | poly(n, t)                           | efficient, stateless   | $q \leq t$                |
| Pseudorandom<br>quantum state<br>(JLS '19, BS '20) | $poly(\lambda)$                      | efficient, stateless   | $time \leq poly(\lambda)$ |
| This work: quantum state "lazy sampling"           | poly(q, n)                           | efficient, stateful    | None                      |

| Oracle simulation for $U$     | Randomness/<br>Memory cost              | Simulation             | Limit distinguisher      |
|-------------------------------|-----------------------------------------|------------------------|--------------------------|
| Exact                         |                                         | inefficient, stateless | None                     |
| $oldsymbol{\mathcal{E}}$ -Net | $O(\log{(1/\varepsilon)} \cdot 2^{2n})$ | inefficient, stateless | $q \le O(1/\varepsilon)$ |

| Oracle simulation for $U$     | Randomness/<br>Memory cost              | Simulation             | Limit distinguisher      |
|-------------------------------|-----------------------------------------|------------------------|--------------------------|
| Exact                         |                                         | inefficient, stateless | None                     |
| $oldsymbol{\mathcal{E}}$ -Net | $O(\log{(1/\varepsilon)} \cdot 2^{2n})$ | inefficient, stateless | $q \le O(1/\varepsilon)$ |
| Unitary <i>t</i> -design      | poly(n, t)                              | efficient, stateless   | $q \leq t$               |

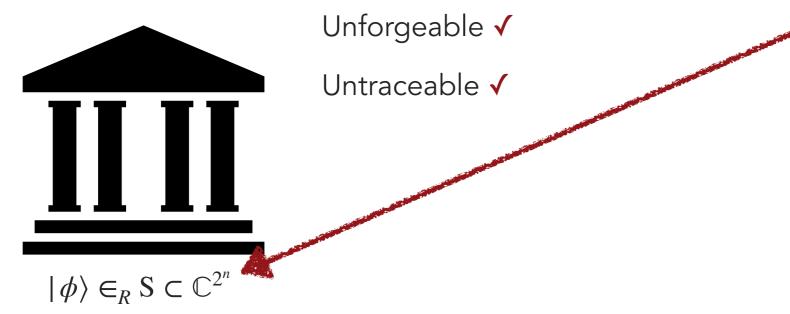
| Oracle simulation for $U$               | Randomness/<br>Memory cost              | Simulation             | Limit distinguisher       |
|-----------------------------------------|-----------------------------------------|------------------------|---------------------------|
| Exact                                   |                                         | inefficient, stateless | None                      |
| ${oldsymbol{\mathcal{E}}}$ -Net         | $O(\log{(1/\varepsilon)} \cdot 2^{2n})$ | inefficient, stateless | $q \le O(1/\varepsilon)$  |
| Unitary <i>t</i> -design                | poly(n, t)                              | efficient, stateless   | $q \leq t$                |
| Pseudorandom<br>unitary???<br>(JLS '19) | poly(λ)                                 | efficient, stateless   | $time \leq poly(\lambda)$ |

| Oracle simulation for $U$               | Randomness/<br>Memory cost              | Simulation                           | Limit distinguisher       |
|-----------------------------------------|-----------------------------------------|--------------------------------------|---------------------------|
| Exact                                   |                                         | inefficient, stateless               | None                      |
| $oldsymbol{\mathcal{E}}$ -Net           | $O(\log{(1/\varepsilon)} \cdot 2^{2n})$ | inefficient, stateless               | $q \le O(1/\varepsilon)$  |
| Unitary <i>t</i> -design                | poly(n, t)                              | efficient, stateless                 | $q \leq t$                |
| Pseudorandom<br>unitary???<br>(JLS '19) | $poly(\lambda)$                         | efficient, stateless                 | $time \leq poly(\lambda)$ |
| This work                               | poly(q, n)                              | <b>space-</b> efficient,<br>stateful | None                      |

No-cloning principle: quantum information cannot be copied.

Oldest idea in quantum crypto: Let's make money out of it!

#### Haar money (JLS '19):

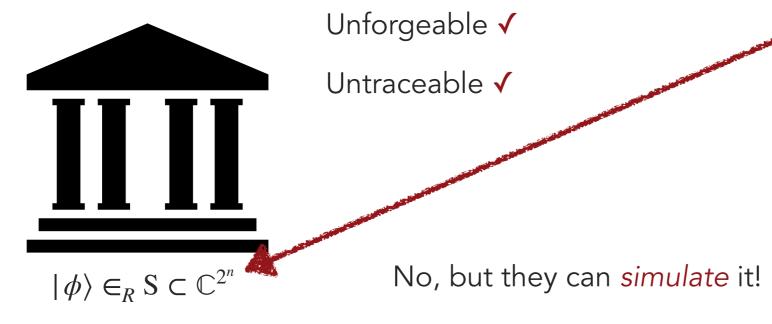


Can the Bank sample such a random state?

No-cloning principle: quantum information cannot be copied.

Oldest idea in quantum crypto: Let's make money out of it!

#### Haar money (JLS '19):



Can the Bank sample such a random state?

No-cloning principle: quantum information cannot be copied.

Oldest idea in quantum crypto: Let's make money out of it!

#### Haar money (JLS '19):



Unforgeable **√** 

Untraceable **√** 

Can the Bank sample such a random state?

No, but they can *simulate* it!

Two options:

 Use pseudorandom quantum state, computationally secure untraceable quantum money (JLS '19)

No-cloning principle: quantum information cannot be copied.

Oldest idea in quantum crypto: Let's make money out of it!

#### Haar money (JLS '19):



Unforgeable **√** 

Untraceable ✓

Can the Bank sample such a random state?

No, but they can *simulate* it!

Two options:

- Use pseudorandom quantum state, computationally secure untraceable quantum money (JLS '19)
- ▶ Use stateful simulation, unconditionally secure untraceable quantum money (AMR)

Stateless simulation scheme  $\Leftrightarrow \{ | \phi_k \rangle \}_{k \in K}$ , pick  $k \in_R K$ , output copies of  $| \phi_k \rangle$ 

Stateless simulation scheme  $\Leftrightarrow \{ | \phi_k \rangle \}_{k \in K}$ , pick  $k \in_R K$ , output copies of  $| \phi_k \rangle$ 

Problem:

 $|\phi\rangle \neq |\psi\rangle$  quantum states  $\Rightarrow |\phi\rangle^{\otimes n}, |\psi\rangle^{\otimes n}$  can be distinguished with probability  $p(n) \to 1 \ (n \to \infty)$ 

Stateless simulation scheme  $\Leftrightarrow \{ | \phi_k \rangle \}_{k \in K}$ , pick  $k \in_R K$ , output copies of  $| \phi_k \rangle$ 

Problem:

 $|\phi\rangle \neq |\psi\rangle$  quantum states  $\Rightarrow |\phi\rangle^{\otimes n}, |\psi\rangle^{\otimes n}$  can be distinguished with probability  $p(n) \to 1 \ (n \to \infty)$ 

Also works for random states sampled according to different measures.

Stateless simulation scheme  $\Leftrightarrow \{ | \phi_k \rangle \}_{k \in K}$ , pick  $k \in_R K$ , output copies of  $| \phi_k \rangle$ 

Problem:

 $|\phi\rangle \neq |\psi\rangle$  quantum states  $\Rightarrow |\phi\rangle^{\otimes n}, |\psi\rangle^{\otimes n}$  can be distinguished with probability  $p(n) \to 1 \ (n \to \infty)$ 

Also works for random states sampled according to different measures.

Statelessness implies query limit!

Stateless simulation scheme  $\Leftrightarrow \{ | \phi_k \rangle \}_{k \in K}$ , pick  $k \in_R K$ , output copies of  $| \phi_k \rangle$ 

Problem:

 $|\phi\rangle \neq |\psi\rangle$  quantum states  $\Rightarrow |\phi\rangle^{\otimes n}, |\psi\rangle^{\otimes n}$  can be distinguished with probability  $p(n) \to 1 \ (n \to \infty)$ 

Also works for random states sampled according to different measures.

Statelessness implies query limit!

Similar argument for unitaries.

# Techniques

A random state and part of an entangled state look the same.

A random state and part of an entangled state look the same.

## Deterministic



A random state and part of an entangled state look the same.



A random state and part of an entangled state look the same.



⇒ stateful oracle simulation without any randomness, just by maintaining entanglement with the distinguisher!

A random state and part of an entangled state look the same.



⇒ stateful oracle simulation without any randomness, just by maintaining entanglement with the distinguisher!

What do  $\ell$  copies of a Haar random state look like to the distingusher?

A random state and part of an entangled state look the same.



⇒ stateful oracle simulation without any randomness, just by maintaining entanglement with the distinguisher!

What do  $\ell$  copies of a Haar random state look like to the distingusher?

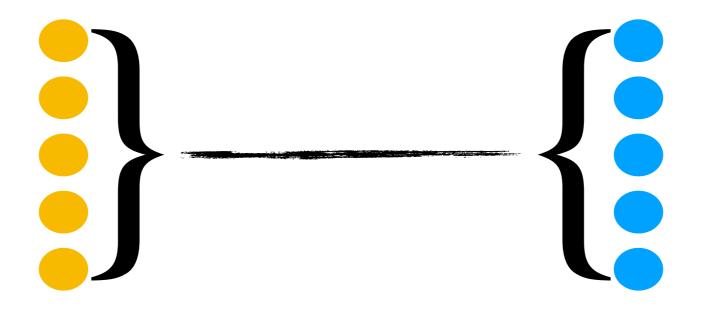
From representation theory: 
$$\mathbb{E}_{|\psi\rangle\sim \mathrm{Haar}}\left[\,|\psi\rangle\langle\psi\,|^{\otimes\ell}\,
ight] = au_{\mathrm{Sym}^{\ell}\mathbb{C}^{\mathrm{d}}}$$

**Fact:**  $\ell$  copies of a Haar random state look like a single Haar random state on the symmetric subspace  $\operatorname{Sym}_{d,\ell}$  of  $\mathbb{C}^d \otimes \mathbb{C}^d \otimes \ldots \otimes \mathbb{C}^d$  looks like half a maximally entangled state on  $\operatorname{Sym}_{d,\ell} \otimes \operatorname{Sym}_{d,\ell}$ 

**Fact:**  $\ell$  copies of a Haar random state look like a single Haar random state on the symmetric subspace  $\operatorname{Sym}_{d,\ell}$  of  $\mathbb{C}^d \otimes \mathbb{C}^d \otimes \ldots \otimes \mathbb{C}^d$  looks like half a maximally entangled state on  $\operatorname{Sym}_{d,\ell} \otimes \operatorname{Sym}_{d,\ell}$ 

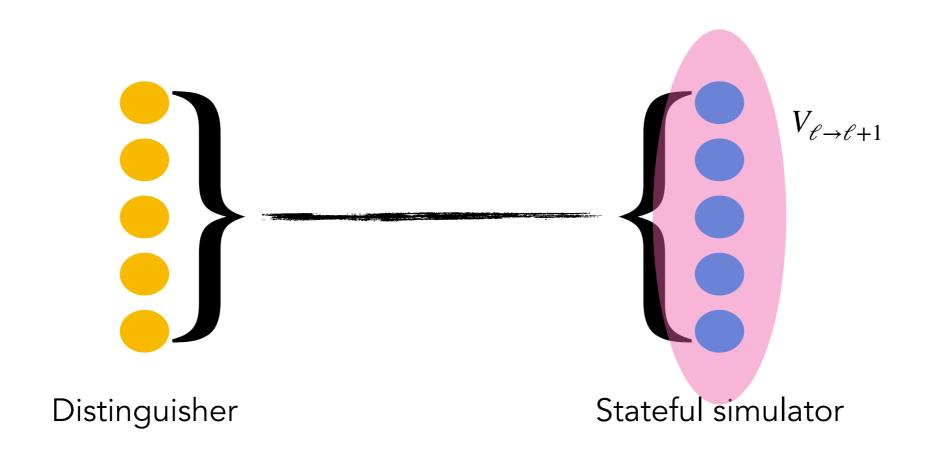
#### Strategy:

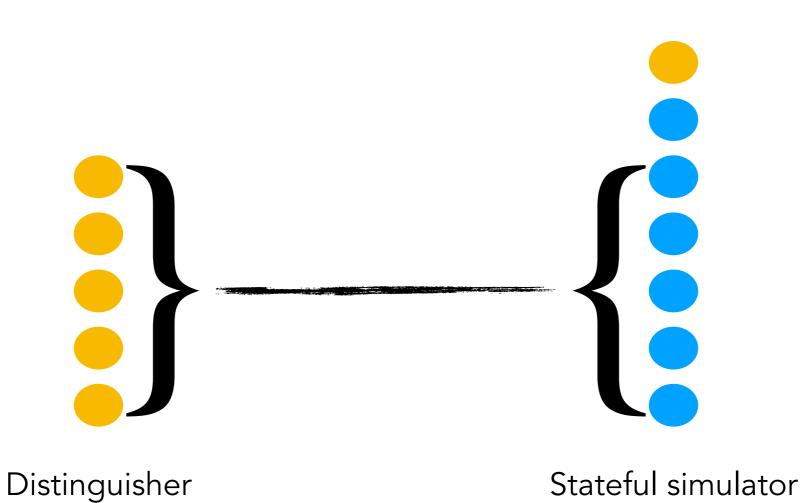
- 1. Maintain maximally entangled state of two copies of  $\operatorname{Sym}_{d,\ell}$ .
- 2. On query: extend it from  $\ell$  to  $\ell+1$  by acting on one of the copies only.

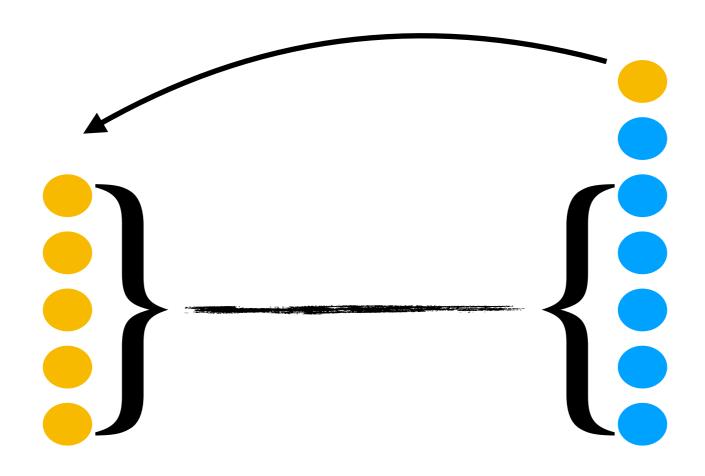


Distinguisher

Stateful simulator

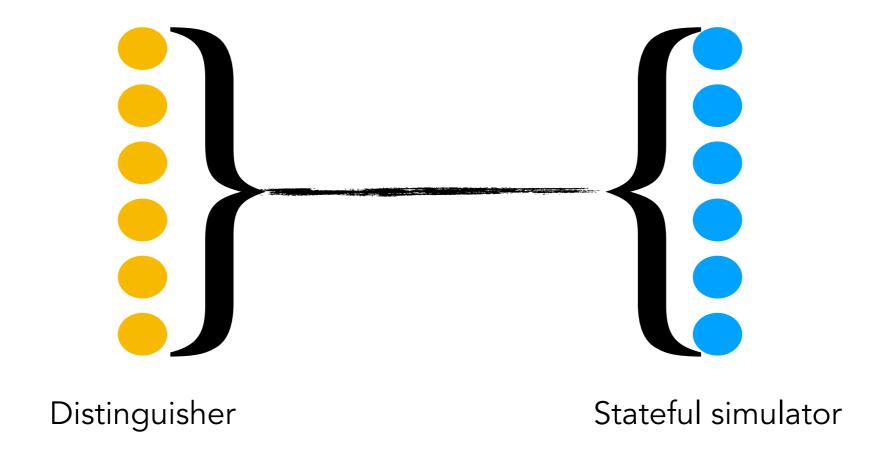






Stateful simulator

Distinguisher



| Several new algorithmic tools for | garbageless quantum state preparation |
|-----------------------------------|---------------------------------------|
|-----------------------------------|---------------------------------------|

- Several new algorithmic tools for garbageless quantum state preparation
- Concrete algorithms: approximate algorithms for the extension of maximally entangled states on symmetric subspaces by an additional copy

- Several new algorithmic tools for garbageless quantum state preparation
- Concrete algorithms: approximate algorithms for the extension of maximally entangled states on symmetric subspaces by an additional copy
- Stateful simulation of random unitaries: combining several nice ingredients.

- Several new algorithmic tools for garbageless quantum state preparation
- Concrete algorithms: approximate algorithms for the extension of maximally entangled states on symmetric subspaces by an additional copy
- Stateful simulation of random unitaries: combining several nice ingredients.
  - first (we think) quantum application of exact unitary designs (Kane '15)

- Several new algorithmic tools for garbageless quantum state preparation
- Concrete algorithms: approximate algorithms for the extension of maximally entangled states on symmetric subspaces by an additional copy
- Stateful simulation of random unitaries: combining several nice ingredients.
  - first (we think) quantum application of exact unitary designs (Kane '15)
  - Exact adaptive-to-nonadaptive reduction using "postselection"

- Several new algorithmic tools for garbageless quantum state preparation
- Concrete algorithms: approximate algorithms for the extension of maximally entangled states on symmetric subspaces by an additional copy
- Stateful simulation of random unitaries: combining several nice ingredients.
  - first (we think) quantum application of exact unitary designs (Kane '15)
  - Exact adaptive-to-nonadaptive reduction using "postselection"
  - Uniqueness property of the Stinespring dilation

## Summary, open questions

#### **Summary:**

- ▶ We develop a theory of stateful simulation of random quantum primitives.
- Random quantum states can be approximately simulated efficiently using a stateful algorithm
- Random unitaries can be simulated exactly in a space-efficient way using a stateful algorithm.
- The random state simulator can be used to construct unconditionally secure untraceable quantum money.

#### Open questions:

- Can we simulate random unitaries efficiently?
- ▶ (From JLS ′19) Construct pseudorandom unitaries!