Quantum zero-knowledge from Locally Simulatable Proofs

Alex Bredariol Grilo

CWI

(1)uSoft

joint work with Anne Broadbent (U. of Ottawa) arxiv:1911.07782

Interactive proofs

Interactive proofs

$L \in N P$

for $x \in L, \exists P$
V accepts
for $x \notin L, \forall P$
V rejects

Interactive proofs

$L \in N P$

for $x \in L, \exists P$
V accepts
for $x \notin L, \forall P$
V rejects
$L \in I P$

for $x \in L, \exists P$
V accepts
for $x \notin L, \forall P$
V rejects whp

Interactive proofs

$L \in N P$

$L \in I P=P S P A C E$

for $x \in L, \exists P$
V accepts
for $x \notin L, \forall P$
V rejects

for $x \in L, \exists P$
V accepts
for $x \notin L, \forall P$
V rejects whp

Zero-knowledge

Zero-knowledge

Zero-knowledge

Zero-knowledge

Zero-knowledge

Zero-knowledge

Computational zero-knowledge
X and Y cannot be efficiently distinguished:

Zero-knowledge

Computational zero-knowledge

X and Y cannot be efficiently distinguished:
\forall poly-time $\mathcal{A}:\left|\operatorname{Pr}_{x \sim D_{X}}[\mathcal{A}(x)=1]-\operatorname{Pr}_{r_{y} \sim D_{Y}}[\mathcal{A}(y)=1]\right| \leq n e g /(n)$

Zero-knowledge

Computational zero-knowledge

X and Y cannot be efficiently distinguished:
\forall poly-time $\mathcal{A}:\left|\operatorname{Pr}_{x \sim D_{X}}[\mathcal{A}(x)=1]-\operatorname{Pr}_{r_{y} \sim D_{Y}}[\mathcal{A}(y)=1]\right| \leq n e g /(n)$

Fundamental notion in modern cryptography!

Example: ZK for 3-coloring

V

Example: ZK for 3-coloring

V

Example: ZK for 3-coloring

Example: ZK for 3-coloring

Completeness \checkmark
Soundness $\checkmark \quad$ ZK X

Example: ZK for 3-coloring

Example: ZK for 3-coloring

Example: ZK for 3-coloring

Example: ZK for 3-coloring

$$
\begin{gathered}
P \\
A \rightarrow 564651 \\
B \rightarrow 867132 \\
C \rightarrow 984565 \\
D \rightarrow 894102 \\
E \rightarrow 069732 \\
F \rightarrow 873210 \\
G \rightarrow 897966
\end{gathered}
$$

Example: ZK for 3-coloring

$$
\begin{gathered}
P \\
A \rightarrow 564651 \\
B \rightarrow 867132 \\
C \rightarrow 984565 \\
D \rightarrow 894102 \\
E \rightarrow 069732 \\
F \rightarrow 873210 \\
G \rightarrow 897966
\end{gathered}
$$

Example: ZK for 3-coloring

Completeness \checkmark Soundness \checkmark CZK \checkmark

Quantum proofs

Quantum proofs

$L \in$ QMA

for $x \in L, \exists P$
V accepts whp
for $x \notin L, \forall P$
V rejects whp
$L \in$ QIP

0/1
for $x \in L, \exists P$
V accepts
for $x \notin L, \forall P$
V rejects whp

Quantum proofs

$L \in$ QMA

for $x \in L, \exists P$
V accepts whp
for $x \notin L, \forall P$
V rejects whp
$L \in$ QIP $=$ PSPACE

for $x \in L, \exists P$
V accepts
for $x \notin L, \forall P$
V rejects whp

Quantum Zero-knowledge

Quantum Zero-knowledge

Quantum Zero-knowledge

Quantum Zero-knowledge

$\%$

Quantum Zero-knowledge

Quantum Zero-knowledge

Quantum computational zero-knowledge
ρ and σ cannot be efficiently distinguished:

Quantum Zero-knowledge

Quantum computational zero-knowledge
ρ and σ cannot be efficiently distinguished:
\forall quantum poly-time $\mathcal{A}:|\operatorname{Pr}[\mathcal{A}(\rho)=1]-\operatorname{Pr}[\mathcal{A}(\sigma)=1]| \leq n e g /(n)$

Zero-knowledge for quantum proofs

Zero-knowledge for quantum proofs

- Assuming qOWF: QMA \subseteq QZK since PSPACE $=\mathrm{CZK} \subseteq$ QZK

Need to go through QMA \subseteq PP
Desired: Efficient prover with QMA witness

Zero-knowledge for quantum proofs

- Assuming qOWF: QMA \subseteq QZK since PSPACE $=\mathrm{CZK} \subseteq$ QZK

Need to go through QMA $\subseteq P P$
Desired: Efficient prover with QMA witness

- BJSW'16: QMA \subseteq QZK with efficient prover

Multiple rounds of communication
Somewhat complicated

Zero-knowledge for quantum proofs

- Assuming qOWF: QMA \subseteq QZK since PSPACE $=\mathrm{CZK} \subseteq$ QZK

Need to go through $\mathrm{QMA} \subseteq \mathrm{PP}$
Desired: Efficient prover with QMA witness

- BJSW'16: QMA \subseteq QZK with efficient prover

Multiple rounds of communication
Somewhat complicated

- BG19: explore Locally Simulatable codes from GSY19

Zero-knowledge for quantum proofs

- Assuming qOWF: QMA \subseteq QZK since PSPACE $=\mathrm{CZK} \subseteq \mathrm{QZK}$

Need to go through QMA $\subseteq P P$
Desired: Efficient prover with QMA witness

- BJSW'16: QMA \subseteq QZK with efficient prover

Multiple rounds of communication
Somewhat complicated

- BG19: explore Locally Simulatable codes from GSY19

Applications in Cryptography

* "commit-and-open" Proof of Knowledge QZK proof for QMA
* "commit-and-open" Proof of Knowledge QSZK argument for QMA
* QNISZK for QMA in the secret parameters setup

Zero-knowledge for quantum proofs

- Assuming qOWF: QMA \subseteq QZK since PSPACE $=\mathrm{CZK} \subseteq$ QZK

Need to go through $\mathrm{QMA} \subseteq \mathrm{PP}$
Desired: Efficient prover with QMA witness

- BJSW'16: QMA \subseteq QZK with efficient prover

Multiple rounds of communication
Somewhat complicated

- BG19: explore Locally Simulatable codes from GSY19

Applications in Cryptography

* "commit-and-open" Proof of Knowledge QZK proof for QMA
* "commit-and-open" Proof of Knowledge QSZK argument for QMA
\star QNISZK for QMA in the secret parameters setup
Applications in Complexity theory
* QMA-hardness of Consistency of local density matrices problem under Karp reductions (open for 15 years!)
\star Locally Simulatable proofs

Zero-knowledge for quantum proofs

- Assuming qOWF: QMA \subseteq QZK since PSPACE $=\mathrm{CZK} \subseteq$ QZK

Need to go through $\mathrm{QMA} \subseteq \mathrm{PP}$
Desired: Efficient prover with QMA witness

- BJSW'16: QMA \subseteq QZK with efficient prover

Multiple rounds of communication
Somewhat complicated

- BG19: explore Locally Simulatable codes from GSY19

Applications in Cryptography

* "commit-and-open" Proof of Knowledge QZK proof for QMA
* "commit-and-open" Proof of Knowledge QSZK argument for QMA
\star QNISZK for QMA in the secret parameters setup
Applications in Complexity theory
* QMA-hardness of Consistency of local density matrices problem under Karp reductions (open for 15 years!)
\star Locally Simulatable proofs

Consistency of local density matrices problem

Consistency of local density matrices problem

Input: Reduced density matrices $\rho_{1}, \ldots, \rho_{m}$ on k-qubits
Output: yes: $\exists \psi$ such that $\forall i:\left\|\operatorname{Tr}_{\overline{S_{i}}}(\psi)-\rho_{i}\right\| \leq \varepsilon$ no: $\forall \psi, \exists i:\left\|\operatorname{Tr}_{\bar{S}_{i}}(\psi)-\rho_{i}\right\| \geq \frac{1}{\operatorname{poly}(n)}$

Consistency of local density matrices problem

Input: Reduced density matrices $\rho_{1}, \ldots, \rho_{m}$ on k-qubits
Output: yes: $\exists \psi$ such that $\forall i:\left\|\operatorname{Tr}_{\overline{S_{i}}}(\psi)-\rho_{i}\right\| \leq \varepsilon$

$$
\text { no: } \forall \psi, \exists i:\left\|\operatorname{Tr}_{\bar{S}_{i}}(\psi)-\rho_{i}\right\| \geq \frac{1}{\operatorname{poly}(n)}
$$

- Liu'06: containment in QMA, and partial result on QMA-hardness

Consistency of local density matrices problem

Input: Reduced density matrices $\rho_{1}, \ldots, \rho_{m}$ on k-qubits
Output: yes: $\exists \psi$ such that $\forall i:\left\|\operatorname{Tr}_{\overline{S_{i}}}(\psi)-\rho_{i}\right\| \leq \varepsilon$

$$
\text { no: } \forall \psi, \exists i:\left\|\operatorname{Tr}_{\bar{S}_{i}}(\psi)-\rho_{i}\right\| \geq \frac{1}{\operatorname{poly}(n)}
$$

- Liu'06: containment in QMA, and partial result on QMA-hardness
- BG'19: QMA-hardness

Very simple ZK proof for QMA

P

$$
\begin{gathered}
V \\
\rho_{1}, \ldots, \rho_{m}
\end{gathered}
$$

Very simple ZK proof for QMA

$$
\begin{array}{cc}
P & V \\
\psi^{\otimes \ell} & \rho_{1}, \ldots, \rho_{m}
\end{array}
$$

Very simple ZK proof for QMA

$$
\begin{gathered}
P \\
X^{a} Z^{b} \psi^{\otimes \ell} Z^{b} X^{a} \\
a_{1}, b_{1} \\
a_{2}, b_{2} \\
\ldots \\
a_{n-1}, b_{n-1} \\
a_{n}, b_{n}
\end{gathered}
$$

Very simple ZK proof for QMA

P
$X^{a} Z^{b} \psi^{\otimes P} Z^{b} X^{a}$
\square
\square

Very simple ZK proof for QMA

P

$$
\begin{aligned}
& a_{1}, b_{1} \rightarrow 564651 \\
& a_{2}, b_{2} \rightarrow 984565
\end{aligned}
$$

$$
a_{n}, b_{n} \rightarrow 894102
$$

Very simple ZK proof for QMA

P

$a_{1}, b_{1} \rightarrow 564651$
$a_{2}, b_{2} \rightarrow 984565$
$\longleftarrow \quad X^{a} Z^{b} \psi^{\otimes \ell} X^{a} Z^{b}$
$a_{n}, b_{n} \rightarrow 894102$

Very simple ZK proof for QMA

P

$a_{1}, b_{1} \rightarrow 564651$
$a_{2}, b_{2} \rightarrow 984565$

$$
\begin{gathered}
\rho_{1}, \ldots, \rho_{m} \\
X^{a} Z^{b} \psi^{\otimes \ell} X^{a} Z^{b}
\end{gathered}
$$

$$
a_{n}, b_{n} \rightarrow 894102
$$

keys to open otp of copies of ρ_{i}

Very simple ZK proof for QMA

P

$a_{1}, b_{1} \rightarrow 564651$
$a_{2}, b_{2} \rightarrow 984565$

$a_{n}, b_{n} \rightarrow 894102$

V

$$
\begin{gathered}
\rho_{1}, \ldots, \rho_{m} \\
X^{a} Z^{b} \psi^{\otimes \ell} X^{a} Z^{b} \\
\square \\
a_{2}, b_{2}
\end{gathered}
$$

$$
a_{n}, b_{n}
$$

Very simple ZK proof for QMA

P

$a_{1}, b_{1} \rightarrow 564651$
$a_{2}, b_{2} \rightarrow 984565$

$a_{n}, b_{n} \rightarrow 894102$

984565, 894102
keys to open otp of copies of ρ_{i}

V

$$
\begin{gathered}
\rho_{1}, \ldots, \rho_{m} \\
X^{a} Z^{b} \psi^{\otimes \ell} X^{a} Z^{b} \\
\square \\
a_{2}, b_{2}
\end{gathered}
$$

\square

$$
a_{n}, b_{n}
$$

Completeness \checkmark

Simulatable codes - Steane code

$$
\begin{aligned}
&|0\rangle \mapsto \frac{1}{2 \sqrt{2}}(|0000000\rangle+|1010101\rangle+|0110011\rangle+|1100110\rangle \\
&+|0001111\rangle+|1011010\rangle+|0111100\rangle+|1101001\rangle) \\
&|1\rangle \mapsto \frac{1}{2 \sqrt{2}}(|1111111\rangle+|0101010\rangle+|1001100\rangle+|0011001\rangle \\
&+|1110000\rangle+|0100101\rangle+|1000011\rangle+|0010110\rangle)
\end{aligned}
$$

Simulatable codes - Steane code

$$
\begin{aligned}
&|0\rangle \mapsto \frac{1}{2 \sqrt{2}}(|0000000\rangle+|1010101\rangle+|0110011\rangle+|1100110\rangle \\
&+|0001111\rangle+|1011010\rangle+|0111100\rangle+|1101001\rangle)
\end{aligned} \begin{aligned}
&|1\rangle \mapsto \frac{1}{2 \sqrt{2}}(|1111111\rangle+|0101010\rangle+|1001100\rangle+|0011001\rangle \\
&+|1110000\rangle+|0100101\rangle+|1000011\rangle+|0010110\rangle)
\end{aligned}
$$

Simulatable codes - Steane code

$$
\begin{aligned}
&|0\rangle \mapsto \frac{1}{2 \sqrt{2}}(|0000000\rangle+|1010101\rangle+|0110011\rangle+|1100110\rangle \\
&+|0001111\rangle+|1011010\rangle+|0111100\rangle+|1101001\rangle)
\end{aligned} \begin{aligned}
|1\rangle \mapsto \frac{1}{2 \sqrt{2}}(\mid & 1111111\rangle+|0101010\rangle+|1001100\rangle+|0011001\rangle \\
& +|1110000\rangle+|0100101\rangle+|1000011\rangle+|0010110\rangle)
\end{aligned}
$$

Simulatable codes - Steane code

$$
\begin{aligned}
&|0\rangle \mapsto \frac{1}{2 \sqrt{2}}(|000000\rangle+|1010101\rangle+|0110011\rangle+|1100110\rangle \\
&+|0001111\rangle+|1011010\rangle+|0111100\rangle+|1101001\rangle) \\
&|1\rangle \mapsto \frac{1}{2 \sqrt{2}}(|111111\rangle\rangle+|0101010\rangle+|1001100\rangle+|0011001\rangle \\
&+|1110000\rangle+|0100101\rangle+|1000011\rangle+|0010110\rangle)
\end{aligned}
$$

- For every $|\psi\rangle$ and $i, j \in[7]$, $\operatorname{Tr}_{\overline{\{i, j\}}}(E n c(|\psi\rangle))=\frac{1}{4}$

Simulatable codes - Steane code

$$
\begin{aligned}
&|0\rangle \mapsto \frac{1}{2 \sqrt{2}}(|000000\rangle+|1010101\rangle+|0110011\rangle+|1100110\rangle \\
&+|0001111\rangle+|1011010\rangle+|0111100\rangle+|1101001\rangle) \\
&|1\rangle \mapsto \frac{1}{2 \sqrt{2}}(|111111\rangle\rangle+|0101010\rangle+|1001100\rangle+|0011001\rangle \\
&+|1110000\rangle+|0100101\rangle+|1000011\rangle+|0010110\rangle)
\end{aligned}
$$

- For every $|\psi\rangle$ and $i, j \in[7]$, $\operatorname{Tr}_{\{i, j\}}(E n c(|\psi\rangle))=\frac{1}{4}$

The reduced density matrix on 2 qubits can be efficiently computed (independently of the logical state)

Simulatable codes - Steane code

$$
\begin{aligned}
&|0\rangle \mapsto \frac{1}{2 \sqrt{2}}(|000000\rangle+|1010101\rangle+|0110011\rangle+|1100110\rangle \\
&+|0001111\rangle+|1011010\rangle+|0111100\rangle+|1101001\rangle) \\
&|1\rangle \mapsto \frac{1}{2 \sqrt{2}}(|111111\rangle\rangle+|0101010\rangle+|1001100\rangle+|0011001\rangle \\
&+|1110000\rangle+|0100101\rangle+|1000011\rangle+|0010110\rangle)
\end{aligned}
$$

- For every $|\psi\rangle$ and $i, j \in[7]$, $\operatorname{Tr}_{\{i, j\}}(E n c(|\psi\rangle))=\frac{1}{4}$

The reduced density matrix on 2 qubits can be efficiently computed (independently of the logical state)

Simulatable codes - Steane code

$$
\begin{aligned}
&|0\rangle \mapsto \frac{1}{2 \sqrt{2}}(|000000\rangle+|1010101\rangle+|0110011\rangle+|1100110\rangle \\
&+|0001111\rangle+|1011010\rangle+|0111100\rangle+|1101001\rangle) \\
&|1\rangle \mapsto \frac{1}{2 \sqrt{2}}(|111111\rangle\rangle+|0101010\rangle+|1001100\rangle+|0011001\rangle \\
&+|1110000\rangle+|0100101\rangle+|1000011\rangle+|0010110\rangle)
\end{aligned}
$$

- For every $|\psi\rangle$ and $i, j \in[7]$, $\operatorname{Tr}_{\{i, j\}}(E n c(|\psi\rangle))=\frac{1}{4}$

The reduced density matrix on 2 qubits can be efficiently computed (independently of the logical state)

- Not true anymore for $i, j, k \in[7]$

Simulatable codes - concatenated Steane code

Simulatable codes - concatenated Steane code

Lemma (s-locally simulatable codes)

Simulatable codes - concatenated Steane code

Lemma (s-locally simulatable codes)

Fix s and let $k=\log _{3}(s)$. We have the following properties of k-fold concatenation of the Steane code \mathcal{C}_{k} :

Simulatable codes - concatenated Steane code

Lemma (s-locally simulatable codes)

Fix s and let $k=\log _{3}(s)$. We have the following properties of k-fold concatenation of the Steane code \mathcal{C}_{k} :
(1) There is a poly $\left(2^{k}\right)$-time classical algorithm that compute s-reduced density matrix of a $\operatorname{Enc}_{\mathcal{C}_{k}}(\rho)$, without knowing ρ

Simulatable codes - concatenated Steane code

Lemma (s-locally simulatable codes)

Fix s and let $k=\log _{3}(s)$. We have the following properties of k-fold concatenation of the Steane code \mathcal{C}_{k} :
(1) There is a poly $\left(2^{k}\right)$-time classical algorithm that compute s-reduced density matrix of a $\operatorname{Enc}_{\mathcal{C}_{k}}(\rho)$, without knowing ρ
(2) There is a poly $\left(2^{k}\right)$-time classical algorithm that compute s-reduced density matrix of (partial) computation on Enc $_{\mathcal{C}_{k}}(\rho)$
transversal Clifford gates
T-gadgets

CLDM is QMA-hard

Circuit-to-hamiltonian construction

Given a circuit $V=U_{T} \ldots U_{1}$ and initial state $\left|\psi_{\text {init }}\right\rangle$, there is a reduction to a 5-Local Hamiltonian H_{V} such that

CLDM is QMA-hard

Circuit-to-hamiltonian construction

Given a circuit $V=U_{T} \ldots U_{1}$ and initial state $\left|\psi_{\text {init }}\right\rangle$, there is a reduction to a 5-Local Hamiltonian H_{V} such that

- If V accepts with high probability, then the history state

$$
\frac{1}{\sqrt{T+1}} \sum_{t \in[T+1]}|t\rangle \otimes U_{t} \ldots U_{1}\left|\psi_{\text {init }}\right\rangle
$$

has low energy in respect to H_{V}.

CLDM is QMA-hard

Circuit-to-hamiltonian construction

Given a circuit $V=U_{T} \ldots U_{1}$ and initial state $\left|\psi_{\text {init }}\right\rangle$, there is a reduction to a 5-Local Hamiltonian H_{V} such that

- If V accepts with high probability, then the history state

$$
\frac{1}{\sqrt{T+1}} \sum_{t \in[T+1]}|t\rangle \otimes U_{t} \ldots U_{1}\left|\psi_{\text {init }}\right\rangle
$$

has low energy in respect to H_{V}.

- If V accepts with low probability, then all states have high energy in respect to H_{V}.

CLDM is QMA-hard

Circuit-to-hamiltonian construction

Given a circuit $V=U_{T} \ldots U_{1}$ and initial state $\left|\psi_{\text {init }}\right\rangle$, there is a reduction to a 5-Local Hamiltonian H_{V} such that

- If V accepts with high probability, then the history state

$$
\frac{1}{\sqrt{T+1}} \sum_{t \in[T+1]}|t\rangle \otimes U_{t} \ldots U_{1}\left|\psi_{\text {init }}\right\rangle
$$

has low energy in respect to H_{V}.

- If V accepts with low probability, then all states have high energy in respect to H_{V}.

Goal

Tweak the verification algorithm such that we can compute the reduced density matrices of history states.

CLDM is QMA-hard

Encoded circuit

Instead of $V=U_{T} \ldots U_{1}$ and initial state $\left|\psi_{i n i t}\right\rangle$, consider the circuit V^{\prime} that
(1) Receives $\frac{1}{2^{n}} \sum_{a, b} \operatorname{Enc}\left(|a, b\rangle\langle a, b| \otimes X^{a} Z^{b}|\psi\rangle\langle\psi| Z^{b} X^{a}\right)$
(2) Check encoding of the witness
(3) Undoes the OTP of the witness
(1) Create $\operatorname{Enc}(|0\rangle)$ and $\operatorname{Enc}(|T\rangle)$
(5) Perform logical V on encoded states
(6) Decode the output

CLDM is QMA-hard

Encoded circuit

Instead of $V=U_{T} \ldots U_{1}$ and initial state $\left|\psi_{\text {init }}\right\rangle$, consider the circuit V^{\prime} that
(1) Receives $\frac{1}{2^{n}} \sum_{a, b} \operatorname{Enc}\left(|a, b\rangle\langle a, b| \otimes X^{a} Z^{b}|\psi\rangle\langle\psi| Z^{b} X^{a}\right)$
(2) Check encoding of the witness
(3) Undoes the OTP of the witness
(9) Create Enc $(|0\rangle)$ and $\operatorname{Enc}(|T\rangle)$
(3) Perform logical V on encoded states
(Decode the output

Theorem

There is a classical simulator that computes in polynomial time the reduced density matrices of the history state of the encoded verifier.

CLDM is QMA-hard

Encoded circuit

Instead of $V=U_{T} \ldots U_{1}$ and initial state $\left|\psi_{\text {init }}\right\rangle$, consider the circuit V^{\prime} that
(1) Receives $\frac{1}{2^{n}} \sum_{a, b} \operatorname{Enc}\left(|a, b\rangle\langle a, b| \otimes X^{a} Z^{b}|\psi\rangle\langle\psi| Z^{b} X^{a}\right)$
(2) Check encoding of the witness
(3) Undoes the OTP of the witness
(9) Create Enc $(|0\rangle)$ and $\operatorname{Enc}(|T\rangle)$
(5) Perform logical V on encoded states
(Decode the output

Theorem

There is a classical simulator that computes in polynomial time the reduced density matrices of the history state of the encoded verifier. Moreover there is a global state consistent with the reduced density matrices iff it is a yes-instance.

CLDM is QMA-hard - Overview of the proof

(1) There is a polynomial-time algorithm that computes the density matrices of snapshot of the computation at time t

- At every step, every qubit is encoded and if it is decoded, we know exactly its value

CLDM is QMA-hard - Overview of the proof

(1) There is a polynomial-time algorithm that computes the density matrices of snapshot of the computation at time t

- At every step, every qubit is encoded and if it is decoded, we know exactly its value
(2) There is a polynomial-time algorithm that computes the density matrices of "invervals" of the computation
- Uses the snapshot simulation with some loss in the parameters

CLDM is QMA-hard - Overview of the proof

(1) There is a polynomial-time algorithm that computes the density matrices of snapshot of the computation at time t

- At every step, every qubit is encoded and if it is decoded, we know exactly its value
(2) There is a polynomial-time algorithm that computes the density matrices of "invervals" of the computation
- Uses the snapshot simulation with some loss in the parameters
(3) There is a polynomial-time algorithm that computes the density matrices of the history state
- Most of clock qubits are traced-out, so the remaining state is a mixture of intervals

Proof of Quantum Knowledge

Proof of Quantum Knowledge

- Properties of (ZK) interactive proof system

Completeness: there is a good strategy for yes-instance Soundness: there is no good strategy for no-instance

Proof of Quantum Knowledge

- Properties of (ZK) interactive proof system

Completeness: there is a good strategy for yes-instance Soundness: there is no good strategy for no-instance

- Proof of Knowledge for NP:
- If Prover passes with high enough probability, then a NP-witness is known

Proof of Quantum Knowledge

- Properties of (ZK) interactive proof system

Completeness: there is a good strategy for yes-instance Soundness: there is no good strategy for no-instance

- Proof of Knowledge for NP:
- If Prover passes with high enough probability, then a NP-witness is known
- There is an extractor K, such that if \tilde{P} passes with probability $\geq \kappa$ $K^{\tilde{P}}$ outputs a good witness with high probability

Proof of Quantum Knowledge

- Properties of (ZK) interactive proof system

Completeness: there is a good strategy for yes-instance Soundness: there is no good strategy for no-instance

- Proof of Knowledge for NP:
- If Prover passes with high enough probability, then a NP-witness is known
- There is an extractor K, such that if \tilde{P} passes with probability $\geq \kappa$ $K^{\tilde{P}}$ outputs a good witness with high probability
- Proof of Quantum Knowedge for QMA
- If Prover passes with high enough probability, then a QMA-witness is known

Proof of Quantum Knowledge

- Properties of (ZK) interactive proof system

Completeness: there is a good strategy for yes-instance Soundness: there is no good strategy for no-instance

- Proof of Knowledge for NP:
- If Prover passes with high enough probability, then a NP-witness is known
- There is an extractor K, such that if \tilde{P} passes with probability $\geq \kappa$ $K^{\tilde{P}}$ outputs a good witness with high probability
- Proof of Quantum Knowedge for QMA
- If Prover passes with high enough probability, then a QMA-witness is known
- BG'19: Definition of PoQ and prove that our protocol is also a PoQ

Proof of Quantum Knowledge

- Properties of (ZK) interactive proof system

Completeness: there is a good strategy for yes-instance Soundness: there is no good strategy for no-instance

- Proof of Knowledge for NP:
- If Prover passes with high enough probability, then a NP-witness is known
- There is an extractor K, such that if \tilde{P} passes with probability $\geq \kappa$ $K^{\tilde{P}}$ outputs a good witness with high probability
- Proof of Quantum Knowedge for QMA
- If Prover passes with high enough probability, then a QMA-witness is known
- BG'19: Definition of PoQ ${ }^{1}$ and prove that our protocol is also a PoQ

[^0]
Open questions

- Find applications for QZK
- MIP ${ }^{n s}=$ PZK-MIP ${ }^{n s}$?
- QNIZK protocol for QMA in the CRS model
- QMA-hardness of (bosonic) representability [LCV'07, WMN'10], universal functional of density function theory [SV'09]

Thank you for your attention!

[^0]: ${ }^{1}$ Independent concurrent work by Coladangelo, Vidick and Zhang.

