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Interactive proofs
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Zero-knowledge
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Zero-knowledge for quantum proofs

Assuming qOWF: QMA ⊆ QZK since PSPACE = CZK ⊆ QZK

Need to go through QMA ⊆ PP
Desired: Efficient prover with QMA witness

BJSW’16: QMA ⊆ QZK with efficient prover

Multiple rounds of communication
Somewhat complicated

BG19: explore Locally Simulatable codes from GSY19

Applications in Cryptography

F “commit-and-open” Proof of Knowledge QZK proof for QMA
F “commit-and-open” Proof of Knowledge QSZK argument for QMA
F QNISZK for QMA in the secret parameters setup

Applications in Complexity theory

F QMA-hardness of Consistency of local density matrices problem under
Karp reductions (open for 15 years!)

F Locally Simulatable proofs
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Consistency of local density matrices problem

Input: Reduced density matrices ρ1, ..., ρm on k-qubits

Output: yes: ∃ψ such that ∀i :
∥∥∥TrSi (ψ)− ρi

∥∥∥ ≤ ε
no: ∀ψ, ∃i :

∥∥∥TrSi (ψ)− ρi
∥∥∥ ≥ 1

poly(n)

Liu’06: containment in QMA, and partial result on QMA-hardness

BG’19: QMA-hardness
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Very simple ZK proof for QMA
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Completeness 3 Soundness 3 ZK 3
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Simulatable codes - Steane code

|0〉 7→ 1

2
√
2
( |0000000〉+ |1010101〉+ |0110011〉+ |1100110〉

+ |0001111〉+ |1011010〉+ |0111100〉+ |1101001〉)

|1〉 7→ 1

2
√
2
( |1111111〉+ |0101010〉+ |1001100〉+ |0011001〉

+ |1110000〉+ |0100101〉+ |1000011〉+ |0010110〉)

Enc(|ψ〉)

For every |ψ〉 and i , j ∈ [7], Tr{i ,j}(Enc(|ψ〉)) = I
4

The reduced density matrix on 2 qubits can be efficiently computed
(independently of the logical state)

Not true anymore for i , j , k ∈ [7]
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Simulatable codes - concatenated Steane code

Lemma (s-locally simulatable codes)

Fix s and let k = log3(s). We have the following properties of k-fold
concatenation of the Steane code Ck :

1 There is a poly(2k)-time classical algorithm that compute s-reduced
density matrix of a EncCk (ρ), without knowing ρ

2 There is a poly(2k)-time classical algorithm that compute s-reduced
density matrix of (partial) computation on EncCk (ρ)

I transversal Clifford gates
I T-gadgets

H

H
Enc(ρ) · · ·

H

13 / 19



Simulatable codes - concatenated Steane code

Lemma (s-locally simulatable codes)

Fix s and let k = log3(s). We have the following properties of k-fold
concatenation of the Steane code Ck :

1 There is a poly(2k)-time classical algorithm that compute s-reduced
density matrix of a EncCk (ρ), without knowing ρ

2 There is a poly(2k)-time classical algorithm that compute s-reduced
density matrix of (partial) computation on EncCk (ρ)

I transversal Clifford gates

I T-gadgets

H

H
Enc(ρ) · · ·

H

13 / 19



Simulatable codes - concatenated Steane code

Lemma (s-locally simulatable codes)

Fix s and let k = log3(s). We have the following properties of k-fold
concatenation of the Steane code Ck :

1 There is a poly(2k)-time classical algorithm that compute s-reduced
density matrix of a EncCk (ρ), without knowing ρ

2 There is a poly(2k)-time classical algorithm that compute s-reduced
density matrix of (partial) computation on EncCk (ρ)

I transversal Clifford gates
I T-gadgets

H

H
Enc(ρ) · · ·

H

13 / 19



Simulatable codes - concatenated Steane code

Lemma (s-locally simulatable codes)

Fix s and let k = log3(s). We have the following properties of k-fold
concatenation of the Steane code Ck :

1 There is a poly(2k)-time classical algorithm that compute s-reduced
density matrix of a EncCk (ρ), without knowing ρ

2 There is a poly(2k)-time classical algorithm that compute s-reduced
density matrix of (partial) computation on EncCk (ρ)

I transversal Clifford gates
I T-gadgets

H

H
Enc(ρ) · · ·

H

13 / 19



Simulatable codes - concatenated Steane code

Lemma (s-locally simulatable codes)

Fix s and let k = log3(s). We have the following properties of k-fold
concatenation of the Steane code Ck :

1 There is a poly(2k)-time classical algorithm that compute s-reduced
density matrix of a EncCk (ρ), without knowing ρ

2 There is a poly(2k)-time classical algorithm that compute s-reduced
density matrix of (partial) computation on EncCk (ρ)

I transversal Clifford gates
I T-gadgets

H

H
Enc(ρ) · · ·

H

13 / 19



CLDM is QMA-hard

Circuit-to-hamiltonian construction

Given a circuit V = UT ...U1 and initial state |ψinit〉, there is a reduction to
a 5-Local Hamiltonian HV such that

If V accepts with high probability, then the history state

1√
T + 1

∑
t∈[T+1]

|t〉 ⊗ Ut ...U1 |ψinit〉

has low energy in respect to HV .

If V accepts with low probability, then all states have high energy in
respect to HV .

Goal

Tweak the verification algorithm such that we can compute the reduced
density matrices of history states.
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CLDM is QMA-hard

Encoded circuit

Instead of V = UT ...U1 and initial state |ψinit〉, consider the circuit V ′

that

1 Receives 1
2n
∑

a,b Enc(|a, b〉 〈a, b| ⊗ X aZb |ψ〉 〈ψ|ZbX a)

2 Check encoding of the witness

3 Undoes the OTP of the witness

4 Create Enc(|0〉) and Enc(|T〉)
5 Perform logical V on encoded states

6 Decode the output

Theorem

There is a classical simulator that computes in polynomial time the
reduced density matrices of the history state of the encoded verifier.

Moreover there is a global state consistent with the reduced density
matrices iff it is a yes-instance.
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CLDM is QMA-hard - Overview of the proof

1 There is a polynomial-time algorithm that computes the density
matrices of snapshot of the computation at time t

I At every step, every qubit is encoded and if it is decoded, we know
exactly its value

2 There is a polynomial-time algorithm that computes the density
matrices of “invervals” of the computation

I Uses the snapshot simulation with some loss in the parameters

3 There is a polynomial-time algorithm that computes the density
matrices of the history state

I Most of clock qubits are traced-out, so the remaining state is a mixture
of intervals
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Proof of Quantum Knowledge

Properties of (ZK) interactive proof system

Completeness: there is a good strategy for yes-instance
Soundness: there is no good strategy for no-instance

Proof of Knowledge for NP:

I If Prover passes with high enough probability, then a NP-witness is
known

I There is an extractor K , such that if P̃ passes with probability ≥ κ
K P̃ outputs a good witness with high probability

Proof of Quantum Knowedge for QMA

I If Prover passes with high enough probability, then a QMA-witness is
known

I BG’19: Definition of PoQ and prove that our protocol is also a PoQ
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Proof of Quantum Knowedge for QMA
I If Prover passes with high enough probability, then a QMA-witness is

known
I BG’19: Definition of PoQ1 and prove that our protocol is also a PoQ

1Independent concurrent work by Coladangelo, Vidick and Zhang.
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Open questions

Find applications for QZK

MIPns = PZK-MIPns?

QNIZK protocol for QMA in the CRS model

QMA-hardness of (bosonic) representability [LCV’07, WMN’10],
universal functional of density function theory [SV’09]
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Thank you for your attention!
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