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Computational zero-knowledge

X and Y cannot be efficiently distinguished:
V poly-time A : |Pry.p,[A(x) = 1] — Pryp, [A(y) = 1]| < negl(n)

Fundamental notion in modern cryptography!
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Input: Reduced density matrices p1, ..., pm on k-qubits

Output: yes: 3t such that Vi : H Trs () —pi|| < ¢
no: e, Ji ; H Tr(¥) - p;‘ > s
k qubits
prmm— —
p1 pm—1
o—
e P, Prn
n qubits

@ Liu'06: containment in QMA, and partial result on QMA-hardness
e BG'19: QMA-hardness
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e For every |¢) and i,j € [7], Trm(Enc(W))) =1

The reduced density matrix on 2 qubits can be efficiently computed
(independently of the logical state)

e Not true anymore for i, j, k € [7]
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Simulatable codes - concatenated Steane code

Lemma (s-locally simulatable codes)
Fix s and let k = logs(s). We have the following properties of k-fold
concatenation of the Steane code Cy:
@ There is a poly(2¥)-time classical algorithm that compute s-reduced
density matrix of a Ence, (p), without knowing p
@ There is a poly(2X)-time classical algorithm that compute s-reduced
density matrix of (partial) computation on Ence, (p)

transversal Clifford gates
T-gadgets

Enc(p)
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CLDM is QMA-hard

Circuit-to-hamiltonian construction

Given a circuit V = Ur...U; and initial state |¢n;t), there is a reduction to
a 5-Local Hamiltonian Hy, such that

o If V accepts with high probability, then the history state

W Z ) ® Ut...Ur |9inie)

te[T+1]

has low energy in respect to Hy .

o If V accepts with low probability, then all states have high energy in
respect to Hy .

Goal

Tweak the verification algorithm such that we can compute the reduced
density matrices of history states.
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Instead of V = Ur...U; and initial state |¢jt), consider the circuit V/
that

Q Receives 5; 7, , Enc(|a, b) (a, b| © X2Z" |¢p) (| ZPX?)
@ Check encoding of the witness

© Undoes the OTP of the witness

© Create Enc(|0)) and Enc(|T))

© Perform logical V on encoded states

© Decode the output

Theorem

There is a classical simulator that computes in polynomial time the
reduced density matrices of the history state of the encoded verifier.
Moreover there is a global state consistent with the reduced density
matrices iff it is a yes-instance.
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CLDM is QMA-hard - Overview of the proof

© There is a polynomial-time algorithm that computes the density
matrices of snapshot of the computation at time t

> At every step, every qubit is encoded and if it is decoded, we know
exactly its value

@ There is a polynomial-time algorithm that computes the density
matrices of “invervals” of the computation
» Uses the snapshot simulation with some loss in the parameters

© There is a polynomial-time algorithm that computes the density
matrices of the history state

» Most of clock qubits are traced-out, so the remaining state is a mixture
of intervals
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Proof of Quantum Knowledge

@ Properties of (ZK) interactive proof system
Completeness: there is a good strategy for yes-instance
Soundness: there is no good strategy for no-instance

@ Proof of Knowledge for NP:

> If Prover passes with high enough probability, then a NP-witness is
known
» There is an extractor K, such that if P passes with probability > &
KP outputs a good witness with high probability

@ Proof of Quantum Knowedge for QMA

> If Prover passes with high enough probability, then a QMA-witness is
known
» BG'19: Definition of PoQ! and prove that our protocol is also a PoQ

YIndependent concurrent work by Coladangelo, Vidick and Zhang.
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Open questions

e Find applications for QZK
e MIP"™ = PZK-MIP"?
@ QNIZK protocol for QMA in the CRS model

@ QMA-hardness of (bosonic) representability [LCV'07, WMN'10],
universal functional of density function theory [SV'09]
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Thank you for your attention!
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