Quantum zero-knowledge from Locally Simulatable Proofs

Alex Bredariol Grilo

joint work with Anne Broadbent (U. of Ottawa) arxiv:1911.07782

for $x \notin L$, $\forall P$ V rejects

Computational zero-knowledge

X and Y cannot be **efficiently** distinguished:

Computational zero-knowledge

X and Y cannot be **efficiently** distinguished:

 $\forall \text{ poly-time } \mathcal{A} : |Pr_{x \sim D_X}[\mathcal{A}(x) = 1] - Pr_{y \sim D_Y}[\mathcal{A}(y) = 1]| \leq \textit{negl}(n)$

Computational zero-knowledge

X and Y cannot be **efficiently** distinguished:

 $\forall \text{ poly-time } \mathcal{A} : |Pr_{x \sim D_X}[\mathcal{A}(x) = 1] - Pr_{y \sim D_Y}[\mathcal{A}(y) = 1]| \leq \textit{negl}(n)$

Fundamental notion in modern cryptography!

V

V

Ρ

A
ightarrow 564651

B
ightarrow 867132

C
ightarrow 984565

 $D \rightarrow 894102$

 $E \rightarrow 069732$

 $F \rightarrow 873210$

G
ightarrow 897966

Ρ

A
ightarrow 564651

B
ightarrow 867132

C
ightarrow 984565

 $D \rightarrow 894102$

 $E \rightarrow 069732$

 $F \rightarrow 873210$

G
ightarrow 897966

Quantum proofs

Quantum proofs

for $x \in L$, $\exists P$ V accepts whp for $x \notin L$, $\forall P$ V rejects whp $L \in \mathsf{QIP}$

for $x \in L$, $\exists P$ V accepts for $x \notin L$, $\forall P$ V rejects whp Quantum proofs

for $x \in L$, $\exists P$ V accepts whp for $x \notin L$, $\forall P$ V rejects whp $L \in \mathsf{QIP} = \mathsf{PSPACE}$

for $x \in L$, $\exists P$ V accepts for $x \notin L$, $\forall P$ V rejects whp

Quantum Zero-knowledge

Quantum computational zero-knowledge

 ρ and σ cannot be **efficiently** distinguished:

Quantum Zero-knowledge

Quantum computational zero-knowledge

 ρ and σ cannot be **efficiently** distinguished:

 \forall quantum poly-time $\mathcal{A} : |Pr[\mathcal{A}(\rho) = 1] - Pr[\mathcal{A}(\sigma) = 1]| \leq \textit{negl}(n)$

• Assuming qOWF: QMA \subseteq QZK since PSPACE = CZK \subseteq QZK Need to go through QMA \subseteq PP Desired: Efficient prover with QMA witness

 Assuming qOWF: QMA ⊆ QZK since PSPACE = CZK ⊆ QZK Need to go through QMA ⊆ PP Desired: Efficient prover with QMA witness
BJSW'16: QMA ⊆ QZK with efficient prover Multiple rounds of communication Somewhat complicated

 Assuming qOWF: QMA ⊆ QZK since PSPACE = CZK ⊆ QZK Need to go through QMA ⊆ PP Desired: Efficient prover with QMA witness

BJSW'16: QMA ⊆ QZK with efficient prover Multiple rounds of communication Somewhat complicated

• BG19: explore Locally Simulatable codes from GSY19

 Assuming qOWF: QMA ⊆ QZK since PSPACE = CZK ⊆ QZK Need to go through QMA ⊆ PP Desired: Efficient prover with QMA witness

BJSW'16: QMA ⊆ QZK with efficient prover Multiple rounds of communication Somewhat complicated

- BG19: explore Locally Simulatable codes from GSY19 Applications in Cryptography
 - ★ "commit-and-open" Proof of Knowledge QZK proof for QMA
 - ★ "commit-and-open" Proof of Knowledge QSZK argument for QMA
 - ★ QNISZK for QMA in the secret parameters setup

 Assuming qOWF: QMA ⊆ QZK since PSPACE = CZK ⊆ QZK Need to go through QMA ⊆ PP Desired: Efficient prover with QMA witness

BJSW'16: QMA ⊆ QZK with efficient prover Multiple rounds of communication Somewhat complicated

• BG19: explore Locally Simulatable codes from GSY19 Applications in Cryptography

- ★ "commit-and-open" Proof of Knowledge QZK proof for QMA
- ★ "commit-and-open" Proof of Knowledge QSZK argument for QMA
- ★ QNISZK for QMA in the secret parameters setup

Applications in Complexity theory

- ★ QMA-hardness of Consistency of local density matrices problem under Karp reductions (open for 15 years!)
- ★ Locally Simulatable proofs

 Assuming qOWF: QMA ⊆ QZK since PSPACE = CZK ⊆ QZK Need to go through QMA ⊆ PP Desired: Efficient prover with QMA witness

BJSW'16: QMA ⊆ QZK with efficient prover Multiple rounds of communication Somewhat complicated

- BG19: explore Locally Simulatable codes from GSY19 Applications in Cryptography
 - * "commit-and-open" Proof of Knowledge QZK proof for QMA
 - "commit-and-open" Proof of Knowledge QSZK argument for QMA
 - ★ QNISZK for QMA in the secret parameters setup

Applications in Complexity theory

- * QMA-hardness of Consistency of local density matrices problem under Karp reductions (open for 15 years!)
- ★ Locally Simulatable proofs

Input: Reduced density matrices $\rho_1, ..., \rho_m$ on k-qubits Output: yes: $\exists \psi$ such that $\forall i : \left\| Tr_{\overline{S_i}}(\psi) - \rho_i \right\| \leq \varepsilon$ no: $\forall \psi, \exists i : \left\| Tr_{\overline{S_i}}(\psi) - \rho_i \right\| \geq \frac{1}{poly(n)}$

Input: Reduced density matrices $\rho_1, ..., \rho_m$ on k-qubits Output: yes: $\exists \psi$ such that $\forall i : \left\| Tr_{\overline{S_i}}(\psi) - \rho_i \right\| \leq \varepsilon$ no: $\forall \psi, \exists i : \left\| Tr_{\overline{S_i}}(\psi) - \rho_i \right\| \geq \frac{1}{poly(n)}$

• Liu'06: containment in QMA, and partial result on QMA-hardness

Input: Reduced density matrices $\rho_1, ..., \rho_m$ on k-qubits Output: yes: $\exists \psi$ such that $\forall i : \left\| Tr_{\overline{S_i}}(\psi) - \rho_i \right\| \leq \varepsilon$ no: $\forall \psi, \exists i : \left\| Tr_{\overline{S_i}}(\psi) - \rho_i \right\| \geq \frac{1}{poly(n)}$

- Liu'06: containment in QMA, and partial result on QMA-hardness
- BG'19: QMA-hardness

Ρ

V

 $\rho_1, ..., \rho_m$

Ġ

Ρ

 $a_1, b_1 \rightarrow 564651$ $a_2, b_2 \rightarrow 984565$...

 $a_n, b_n \rightarrow 894102$

V

•••

6

6

69

- 65

 a_n, b_n

$$\begin{split} |0\rangle &\mapsto \frac{1}{2\sqrt{2}} (\ |0000000\rangle + |1010101\rangle + |0110011\rangle + |1100110\rangle \\ &+ |0001111\rangle + |1011010\rangle + |0111100\rangle + |1101001\rangle) \\ |1\rangle &\mapsto \frac{1}{2\sqrt{2}} (\ |111111\rangle + |0101010\rangle + |1001100\rangle + |0011001\rangle \\ &+ |1110000\rangle + |0100101\rangle + |1000011\rangle + |0010110\rangle) \end{split}$$

$$\begin{split} |0\rangle &\mapsto \frac{1}{2\sqrt{2}} (\ |000000\rangle + |1010101\rangle + |0110011\rangle + |1100110\rangle \\ &+ |0001111\rangle + |1011010\rangle + |0111100\rangle + |1101001\rangle) \\ |1\rangle &\mapsto \frac{1}{2\sqrt{2}} (\ |1111111\rangle + |010101\rangle + |1001100\rangle + |0011001\rangle \\ &+ |1110000\rangle + |0100101\rangle + |1000011\rangle + |0010110\rangle) \end{split}$$

$$\begin{split} |0\rangle &\mapsto \frac{1}{2\sqrt{2}} (\ |000000\rangle + |1010101\rangle + |0110011\rangle + |1100110\rangle \\ &+ |0001111\rangle + |1011010\rangle + |0111100\rangle + |1101001\rangle) \\ |1\rangle &\mapsto \frac{1}{2\sqrt{2}} (\ |1111111\rangle + |010101\rangle + |1001100\rangle + |0011001\rangle \\ &+ |1110000\rangle + |0100101\rangle + |1000011\rangle + |0010110\rangle) \end{split}$$

$$\begin{split} |0\rangle &\mapsto \frac{1}{2\sqrt{2}} (\ |000000\rangle + |1010101\rangle + |0110011\rangle + |1100110\rangle \\ &+ |0001111\rangle + |1011010\rangle + |0111100\rangle + |1101001\rangle) \\ |1\rangle &\mapsto \frac{1}{2\sqrt{2}} (\ |1111111\rangle + |010101\rangle + |1001100\rangle + |0011001\rangle \\ &+ |1110000\rangle + |0100101\rangle + |1000011\rangle + |0010110\rangle) \end{split}$$

• For every $|\psi\rangle$ and $i, j \in [7]$, $Tr_{\overline{\{i,j\}}}(Enc(|\psi\rangle)) = \frac{1}{4}$

$$\begin{split} |0\rangle &\mapsto \frac{1}{2\sqrt{2}} (\ |000000\rangle + |1010101\rangle + |0110011\rangle + |1100110\rangle \\ &+ |0001111\rangle + |1011010\rangle + |0111100\rangle + |1101001\rangle) \\ |1\rangle &\mapsto \frac{1}{2\sqrt{2}} (\ |1111111\rangle + |010101\rangle + |1001100\rangle + |0011001\rangle \\ &+ |1110000\rangle + |0100101\rangle + |1000011\rangle + |0010110\rangle) \end{split}$$

• For every $|\psi\rangle$ and $i, j \in [7]$, $Tr_{\overline{\{i,j\}}}(Enc(|\psi\rangle)) = \frac{1}{4}$

The reduced density matrix on 2 qubits can be *efficiently computed* (independently of the logical state)

$$\begin{split} |0\rangle &\mapsto \frac{1}{2\sqrt{2}} (\ |0000000\rangle + |1010101\rangle + |0110011\rangle + |1100110\rangle \\ &+ |0001111\rangle + |1011010\rangle + |0111100\rangle + |1101001\rangle) \\ |1\rangle &\mapsto \frac{1}{2\sqrt{2}} (\ |111111\rangle + |0101010\rangle + |1001100\rangle + |0011001\rangle \\ &+ |1110000\rangle + |0100101\rangle + |1000011\rangle + |0010110\rangle) \end{split}$$

• For every $|\psi\rangle$ and $i, j \in [7]$, $Tr_{\overline{\{i,j\}}}(Enc(|\psi\rangle)) = \frac{1}{4}$

The reduced density matrix on 2 qubits can be *efficiently computed* (independently of the logical state)

$$\begin{split} |0\rangle &\mapsto \frac{1}{2\sqrt{2}} (\ |000000\rangle + |1010101\rangle + |0110011\rangle + |1100110\rangle \\ &+ |0001111\rangle + |1011010\rangle + |0111100\rangle + |1101001\rangle) \\ |1\rangle &\mapsto \frac{1}{2\sqrt{2}} (\ |111111\rangle + |010101\rangle + |1001100\rangle + |0011001\rangle \\ &+ |1110000\rangle + |0100101\rangle + |1000011\rangle + |0010110\rangle) \end{split}$$

• For every $|\psi\rangle$ and $i, j \in [7]$, $Tr_{\overline{\{i,j\}}}(Enc(|\psi\rangle)) = \frac{1}{4}$

The reduced density matrix on 2 qubits can be *efficiently computed* (independently of the logical state)

• Not true anymore for $i, j, k \in [7]$

Lemma (*s*-locally simulatable codes)

Lemma (s-locally simulatable codes)

Fix s and let $k = \log_3(s)$. We have the following properties of k-fold concatenation of the Steane code C_k :

Lemma (s-locally simulatable codes)

Fix s and let $k = \log_3(s)$. We have the following properties of k-fold concatenation of the Steane code C_k :

• There is a poly(2^k)-time classical algorithm that compute s-reduced density matrix of a $Enc_{\mathcal{C}_k}(\rho)$, without knowing ρ

Lemma (s-locally simulatable codes)

Fix s and let $k = \log_3(s)$. We have the following properties of k-fold concatenation of the Steane code C_k :

- There is a poly(2^k)-time classical algorithm that compute s-reduced density matrix of a $Enc_{\mathcal{C}_k}(\rho)$, without knowing ρ
- There is a poly(2^k)-time classical algorithm that compute s-reduced density matrix of (partial) computation on Enc_{Ck}(ρ)
 - transversal Clifford gates

T-gadgets

CLDM is QMA-hard

Circuit-to-hamiltonian construction

Given a circuit $V = U_T ... U_1$ and initial state $|\psi_{init}\rangle$, there is a reduction to a 5-Local Hamiltonian H_V such that

CLDM is QMA-hard

Circuit-to-hamiltonian construction

Given a circuit $V = U_T ... U_1$ and initial state $|\psi_{init}\rangle$, there is a reduction to a 5-Local Hamiltonian H_V such that

• If V accepts with high probability, then the *history state*

$$rac{1}{\sqrt{\mathcal{T}+1}}\sum_{t\in [\mathcal{T}+1]}\ket{t}\otimes U_t...U_1\ket{\psi_{\mathit{init}}}$$

has low energy in respect to H_V .
Circuit-to-hamiltonian construction

Given a circuit $V = U_T ... U_1$ and initial state $|\psi_{init}\rangle$, there is a reduction to a 5-Local Hamiltonian H_V such that

• If V accepts with high probability, then the history state

$$rac{1}{\sqrt{T+1}}\sum_{t\in [T+1]}\ket{t}\otimes U_t...U_1\ket{\psi_{\mathit{init}}}$$

has low energy in respect to H_V .

• If V accepts with low probability, then all states have high energy in respect to H_V .

Circuit-to-hamiltonian construction

Given a circuit $V = U_T ... U_1$ and initial state $|\psi_{init}\rangle$, there is a reduction to a 5-Local Hamiltonian H_V such that

• If V accepts with high probability, then the history state

$$rac{1}{\sqrt{T+1}}\sum_{t\in [T+1]}\ket{t}\otimes U_t...U_1\ket{\psi_{\mathit{init}}}$$

has low energy in respect to H_V .

 If V accepts with low probability, then all states have high energy in respect to H_V.

Goal

Tweak the verification algorithm such that we can compute the reduced density matrices of history states.

Encoded circuit

Instead of $V = U_T ... U_1$ and initial state $|\psi_{init}\rangle$, consider the circuit V' that

- Receives $\frac{1}{2^n} \sum_{a,b} Enc(|a,b\rangle \langle a,b| \otimes X^a Z^b |\psi\rangle \langle \psi| Z^b X^a)$
- Check encoding of the witness
- Ondoes the OTP of the witness
- Create $Enc(|0\rangle)$ and $Enc(|T\rangle)$
- **\bigcirc** Perform logical V on encoded states
- Oecode the output

Encoded circuit

Instead of $V = U_T ... U_1$ and initial state $|\psi_{init}\rangle$, consider the circuit V' that

- Receives $\frac{1}{2^n} \sum_{a,b} Enc(|a,b\rangle \langle a,b| \otimes X^a Z^b |\psi\rangle \langle \psi| Z^b X^a)$
- Check encoding of the witness
- Ondoes the OTP of the witness
- Create $Enc(|0\rangle)$ and $Enc(|T\rangle)$
- **\bigcirc** Perform logical V on encoded states
- O Decode the output

Theorem

There is a classical simulator that computes in polynomial time the reduced density matrices of the history state of the encoded verifier.

Encoded circuit

Instead of $V = U_T ... U_1$ and initial state $|\psi_{init}\rangle$, consider the circuit V' that

- Receives $\frac{1}{2^n} \sum_{a,b} Enc(|a,b\rangle \langle a,b| \otimes X^a Z^b |\psi\rangle \langle \psi| Z^b X^a)$
- Check encoding of the witness
- Ondoes the OTP of the witness
- Create $Enc(|0\rangle)$ and $Enc(|T\rangle)$
- **\bigcirc** Perform logical V on encoded states
- O Decode the output

Theorem

There is a classical simulator that computes in polynomial time the reduced density matrices of the history state of the encoded verifier. Moreover there is a global state consistent with the reduced density matrices iff it is a yes-instance. CLDM is QMA-hard - Overview of the proof

- There is a polynomial-time algorithm that computes the density matrices of snapshot of the computation at time t
 - At every step, every qubit is encoded and if it is decoded, we know exactly its value

CLDM is QMA-hard - Overview of the proof

- There is a polynomial-time algorithm that computes the density matrices of snapshot of the computation at time t
 - At every step, every qubit is encoded and if it is decoded, we know exactly its value
- There is a polynomial-time algorithm that computes the density matrices of "invervals" of the computation
 - Uses the snapshot simulation with some loss in the parameters

CLDM is QMA-hard - Overview of the proof

- There is a polynomial-time algorithm that computes the density matrices of snapshot of the computation at time t
 - At every step, every qubit is encoded and if it is decoded, we know exactly its value
- There is a polynomial-time algorithm that computes the density matrices of "invervals" of the computation
 - Uses the snapshot simulation with some loss in the parameters
- There is a polynomial-time algorithm that computes the density matrices of the history state
 - Most of clock qubits are traced-out, so the remaining state is a mixture of intervals

Properties of (ZK) interactive proof system
 Completeness: there is a good strategy for yes-instance
 Soundness: there is no good strategy for no-instance

• Properties of (ZK) interactive proof system

Completeness: there is a good strategy for yes-instance Soundness: there is no good strategy for no-instance

- Proof of Knowledge for NP:
 - If Prover passes with high enough probability, then a NP-witness is known

• Properties of (ZK) interactive proof system

Completeness: there is a good strategy for yes-instance Soundness: there is no good strategy for no-instance

• Proof of Knowledge for NP:

- If Prover passes with high enough probability, then a NP-witness is known
- There is an extractor K, such that if \tilde{P} passes with probability $\geq \kappa$ $K^{\tilde{P}}$ outputs a good witness with high probability

• Properties of (ZK) interactive proof system

Completeness: there is a good strategy for yes-instance Soundness: there is no good strategy for no-instance

• Proof of Knowledge for NP:

- If Prover passes with high enough probability, then a NP-witness is known
- There is an extractor K, such that if \tilde{P} passes with probability $\geq \kappa$ $K^{\tilde{P}}$ outputs a good witness with high probability
- Proof of Quantum Knowedge for QMA
 - If Prover passes with high enough probability, then a QMA-witness is known

• Properties of (ZK) interactive proof system

Completeness: there is a good strategy for yes-instance Soundness: there is no good strategy for no-instance

• Proof of Knowledge for NP:

- If Prover passes with high enough probability, then a NP-witness is known
- There is an extractor K, such that if \tilde{P} passes with probability $\geq \kappa$ $K^{\tilde{P}}$ outputs a good witness with high probability
- Proof of Quantum Knowedge for QMA
 - If Prover passes with high enough probability, then a QMA-witness is known
 - ▶ BG'19: Definition of PoQ and prove that our protocol is also a PoQ

- Properties of (ZK) interactive proof system
 Completeness: there is a good strategy for yes-instance
 Soundness: there is no good strategy for no-instance
- Proof of Knowledge for NP:
 - If Prover passes with high enough probability, then a NP-witness is known
 - There is an extractor K, such that if \tilde{P} passes with probability $\geq \kappa K^{\tilde{P}}$ outputs a good witness with high probability
- Proof of Quantum Knowedge for QMA
 - If Prover passes with high enough probability, then a QMA-witness is known
 - ▶ BG'19: Definition of PoQ¹ and prove that our protocol is also a PoQ

¹Independent concurrent work by Coladangelo, Vidick and Zhang.

Open questions

- Find applications for QZK
- $MIP^{ns} = PZK-MIP^{ns}$?
- QNIZK protocol for QMA in the CRS model
- QMA-hardness of (bosonic) representability [LCV'07, WMN'10], universal functional of density function theory [SV'09]

Thank you for your attention!