Quantum Private Information Retrieval for Quantum Messages Seunghoan Song¹, Masahito Hayashi^{2,1}

¹Nagoya University, ²Southern University of Science and Technology

(arXiv:2101.09041)

I. Private Information Retrieval (PIR)

Private Information Retrieval

Private Information Retrieval (PIR) is the problem to retrieve one of f messages from server(s) without revealing the identity of the retrieved message.

III. [Result 2] One-Server QPIR with Entanglement

Theorem 1 Let Φ_{cl} be a QPIR protocol for classical messages with communication complexity O(f(m)) and O(g(m)) ebits. In the blind setting, there exists a QPIR protocol for quantum messages with communication complexity O(f(m)) and O(m + q(m)) ebits.

[Proof idea] Quantum teleportation + QPIR for classical messages Φ_{cl} .

- "Downloading all" messages in the server is optimal for the classical case [Chor et al.95].
- Existing Quantum PIR (QPIR) studies mainly focused on QPIR for classical message retrieval with quantum communication. [Le Gall12], [Baumeler and Broadbent 15], [Aharonov et al.19], · · ·

Blind and Visible Settings for State Preparation

Blind Setting: The server(s) contains quantum systems A_1, \ldots, A_f with states ρ_1, \ldots, ρ_f .

- The server(s) does not know the states ρ_1, \ldots, ρ_f .
- Copying the states are impossible by no cloning theorem.
- 2. Visible Setting: The server(s) contains the description of ρ_1, \ldots, ρ_f .

IV. [Result 3] Two-Server QSPIR for Pure Qubit States

Idea 1. Decomposition of pure qubit states + 2. Classical two-server PIR

1. Decomposition of pure qubit states

• Decomposition of pure states Any pure qubit states $|\psi\rangle$ are written as

 $|\psi\rangle = \mathsf{S}(\varphi)\mathsf{R}(\theta)|0\rangle$

with some $\varphi \in [0, 2\pi)$ and $\theta \in [0, \pi/2]$, where

- The server(s) knows the states.
- The server(s) may generate multiple copies of ρ_1, \ldots, ρ_f .
- The server(s) may apply operations depending on the description of $ho_1,\ldots,
 ho_{\mathsf{f}}.$

II. Main Results

- "Downloading all" has communication complexity O(m).
- m: the total size of messages/states in a server.
- Communication complexity (CC) = Query cost + Download cost.

[**Result 1**]: "Downloading all" is optimal for one-server QPIR.

Messages	Server Model	Optimal CC	Ref.
Classical	Honest	$O(\operatorname{poly}\log m)$	[Kerenidis et al. 16]
Classical	Specious*	$\Theta(m)$	[Baumeler-Broadbent 15]
Quantum (blind)	Honest	$\Theta(m)$	[This paper]
Quantum (visible)	Honest	$\Theta(m)$ (for one-round)	[This paper]

* Specious server does malicious actions without noticed by the user.

[Result 2]: There exists an efficient one-server QPIR protocol with shared entanglement.

[Rotation] $R(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$, [Phase-shift] $S(\varphi) = \begin{pmatrix} 1 & 0 \\ 0 & e^{\sqrt{-1}\varphi} \end{pmatrix}$.

- $\mathsf{R}(\theta)\mathsf{R}(\theta') = \mathsf{R}(\theta + \theta'), \ \mathsf{S}(\varphi)\mathsf{S}(\varphi') = \mathsf{S}(\varphi + \varphi').$
- $\mathsf{R}(\theta) \otimes \mathsf{R}(\theta') |\Phi\rangle = \mathsf{R}(\theta \theta') \otimes I |\Phi\rangle,$ $\mathsf{S}(\varphi) \otimes \mathsf{S}(\varphi') | \Phi \rangle = \mathsf{S}(\varphi - \varphi') \otimes I | \Phi \rangle.$

2. QSPIR protocol induced from classical two-server PIR

Messages	Server Model	Optimal CC	Ref.
Classical	Honest	$O(\log m)$	[Kerenidis et al. 16]
Classical	Specious	$\Theta(m)$	[Aharonov et al. 19]
Quantum (blind/visible)	Honest	$O(\log m)$	[This paper]

[Result 3]: There exist efficient two-server quantum symmetric PIR (QSPIR) protocols on the visible setting.

(QSPIR is the QPIR in which the user obtains no information except for ρ_K .)

	Protocol 1	Protocol 2
Dimension of pure states	d=2	$d \ge 2$
Classical Communication	2f bits	2f bits
Quantum Communication	8 qubits	$4d^d \log d$ qubits
Prior Entanglement	4 ebits	$2d^d \log d$ ebits
		$(m = f \log d)$

$\begin{vmatrix} \psi_1\rangle = S(\varphi_1)R(\theta_1) 0\rangle \\ \psi_2\rangle = S(\varphi_2)R(\theta_2) 0\rangle \end{vmatrix}$	$ \Phi\rangle \in A \otimes A'$	$ \psi_2\rangle = S(\varphi_2)R(\theta_2) 0\rangle$
$ \psi_3\rangle = S(\varphi_3)R(\theta_3) 0\rangle$		$ \psi_3\rangle = S(\varphi_3)R(\theta_3) 0\rangle$
$ \psi_4\rangle = S(\varphi_4)R(\theta_4) 0\rangle$	$\sim B \sim \sim P \sim $	$ \psi_4\rangle = S(\varphi_4)R(\theta_4) 0\rangle$
$ \psi_5\rangle = S(\varphi_5)R(\theta_5) 0\rangle$	$ \Phi\rangle \in B \otimes B'$	$ \psi_5\rangle = S(\varphi_5)R(\theta_5) 0\rangle$

- User secrecy: Each of Q_1 and Q_2 is random subset of $\{1, \ldots, 5\}$.
- Server secrecy: The received states $\mathsf{R}(\theta_5) \otimes I | \Phi \rangle$ and $\mathsf{S}(\varphi_5) \otimes I | \Phi \rangle$ are independent of other states.
- **Correctness**: The targeted state $|\psi_5\rangle$ is recovered by the following steps.
 - 1. Received state: $\mathsf{R}(\theta_5) \otimes I | \Phi \rangle \in A \otimes A'$ and $\mathsf{S}(\varphi_5) \otimes I | \Phi \rangle \in B \otimes B'$ 2. Apply bell measurement on $A' \otimes B'$: $\mathsf{R}(\theta_5) \otimes \mathsf{S}(\varphi_5) | \Phi \rangle \in A \otimes B$. 3. Apply basis measurement $\{|0\rangle, |1\rangle\}$ on $B: |\psi_5\rangle = S(\theta_5)R(\theta_5)|0\rangle \in A$.