NTT A Simple Low-latency Real-time Certifiable Quantum Random Number Generator

Yanbao Zhang^{1,2}, Hsin-Pin Lo¹, Alan Mink³, Takuya Ikuta¹, Toshimori Honjo¹, Hiroki Takesue¹, and William J. Munro^{1,2}

¹NTT Basic Research Laboratories, NTT Corporation, Atsugi, Kanagawa 243-0198, Japan

²NTT Research Center for Theoretical Quantum Physics, NTT Corporation, Atsugi, Kanagawa 243-0198, Japan

³National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA

Main Messages

- · Quantum mechanics allows to generate and certify genuine randomness.
- Most demonstrations focus on high asymptotic generation rates, resulting in high latency between the initial request and the delivery of the requested random bits.
- · We develop methods to efficiently certify randomness taking into account adversarial imperfections in both the state preparation and the measurement apparatus. \rightarrow no need of the IID assumption & semi-device-independent randomness generation.
- We demonstrate low-latency real-time certifiable quantum randomness generation from measurements on photonic time-bin states.
- Every tenth of a second, we can certify enough entropy with respect to quantum (or classical) adversaries in order to generate a block of 8192 (or 2×8192) random bits with a certified error bounded by 2^{-64} and with an extraction time of 0.02 s (or 0.04 s).
- We quantify the advantage of quantum adversaries vs classical adversaries.
 - * For details, see Y. Z., H. P. Lo et al., Nat. Commun. 12, 1056 (2021).

Why Is Randomness Important?

Gambling

Sampling

Simulation

Cryptography

The generated random numbers are uniformly distributed and unpredictable, if

- a particular quantum state, for example $|H\rangle$, is prepared;
- a particular measurement, for example $\{|D\rangle\langle D|, |A\rangle\langle A|\}$, is performed.

A Simple QRNG with Time-bin Measurements An optical pulse in the early time bin is inputted into a MZI, and outputs are detected by two SPDs.

- Two orthogonal measurement bases: energy-basis and time-basis.
 - 1. Energy-basis: random (0: click at SPD1, or 1: click at SPD2)

Our goal: Estimate smooth min-entropy $H_{\min}^{\varepsilon}(\mathbf{C}|\mathbf{Z} \mathbf{E}; \Phi)$ conditional on $\mathbf{Z} \mathbf{E}$ and success event Φ

Step 1: Construct the "model" Ω of the experiment in the presence of practical issues.

Step 2: Construct non-negative quantum probability estimation factors (QEFs) F(CZ) satisfying that

$$\forall \rho_{\mathbf{CZE}} \in \Omega, \sum_{\mathbf{cz}} F(\mathbf{cz}) R_{\alpha}(\rho_{\mathrm{E}}(\mathbf{cz}) | \rho_{\mathrm{E}}(\mathbf{z})) \leq 1$$

where $R_{\alpha}(\rho_{\rm E}(\mathbf{cz})|\rho_{\rm E}(\mathbf{z}))$ are sandwiched Rényi powers of order $\alpha > 1$.

Step 3: When success $\Phi \triangleq \{\mathbf{cz}: F(\mathbf{cz}) \ge t_{\min}\}$, lower-bound the ε -smooth min-entropy as $\frac{1}{\alpha-1}\log(t_{\min}) - \frac{1}{\alpha-1}\log\frac{1}{1-\sqrt{1-\varepsilon^2}} + \frac{\alpha}{\alpha-1}\log(\kappa),$

where κ is a lower bound of the success probability.

Step 4: Compose with a quantum-proof strong extractor to generate random bits. The soundness error is determined by the smoothness error ε and the extractor error.

> Y. Z., H. Fu, and E. Knill, Phys. Rev. Research 2, 013016 (2020) Y. Z., H. P. Lo et al., Nat. Commun. 12, 1056 (2021)

Classical vs Quantum Side Information

ideal. classical adversary

---- ideal, quantum adversary

Pros: simple and fast generation of quantum random numbers.

Cons: fragile. The security of generated random numbers is easily affected by practical issues (for example, multiphoton events and measurement imprecision).

Device-independent Quantum Random Number Generator

Idea behind randomness generation:

If the distribution $\{P(ab|xy)\}$ violates local realism, the output *ab* cannot be a deterministic function of the input xy and any other side information.

Pros: robust and high practical security. Random numbers are certifiable even if the inner working of quantum devices is not reliable.

Cons: complicate and low performance. The scheme is difficult to realize and the generation rate is pretty low (~100 bits/second).

Here we simulate the result at a trial according to either the σ_{χ} - or σ_{z} -basis measurement on the depolarized single-photon state, where the σ_{χ} -basis measurement is chosen with probability 0.9999.

Our method can certify randomness without assuming that the state and measurements are fully characterized. Instead, our method requires only the knowledge of the misalignment angle δ between the two measurement bases and the lower bound $q_{1,\mathrm{lb}}$ on the probability of a single photon in a practical photon source. For the ideal case, we set $q_{1,\mathrm{lb}}=1$ and $\delta=0,$ while for the practical case, we set $q_{1,lb} = 0.95$ and $\delta = 5^{\circ}$.

Histogram of the numbers of random bits certifiable with soundness error 2^{-64} from 4,200 instances of our QRNG. Each instance of our QRNG uses a data block obtained in 0.1 s runtime.

- Each instance generates 8192 (or 2×8192) random bits against quantum (or classical) adversaries with soundness error $2^{-64} \approx 5.4 \times 10^{-20}$ \rightarrow high security.
- Each instance takes 0.1 s runtime (which includes the latency 0.047 s) + 0.02 s (or 0.04 s) extraction time \rightarrow real time & low latency.
- > Clear demonstration of the advantage of quantum adversaries as compared to classical adversaries.

Future Work

- Reduce the size of our QRNG.
- Build a continuously-operating, high-security and high-speed quantum randomness beacon.