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Outline
• We show that the following three classical algorithms are equivalent:

Privacy amplification (PA), Error correction (EC), Data compression (DC) 

in the sense that their performance indices(security parameter or failure probability)

exactly equal.

• Conditions:  1. Security of PA is evaluated by the purified distance.

2. All Classical algorithms are linear (linear hash functions, linear codes).
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Abstract: Privacy amplification (PA) is an indispensable component in classical and quantum cryptography. Error correction (EC) and data compression (DC) algorithms are also indispensable in classical and quantum information 
theory. We here study these three algorithms (PA, EC, and DC) in the presence of quantum side information, and show that they all become equivalent in the one-shot scenario. As an application of this equivalence, we take 
previously known security bounds of PA, and translate them into coding theorems for EC and DC which have not been obtained previously. Further, we apply these results to simplify and improve our previous result that the two 
prevalent approaches to the security proof of quantum key distribution (QKD) are equivalent. We also propose a new method to simplify the security proof of QKD.

Privacy Amplification (PA)

• A process of converting a “roughly secure” string into a “perfectly secure” string
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Main Theorems

Setting: Two classical algorithms (We here omit data compression for the sake of simplicity)

We evaluate the security of PA by the purified distance：

𝑄PA 𝜌𝐴𝐸 ≔ 1− 𝐹 𝜌𝐾𝐸 , 𝜌𝐾𝐸
ideal 2

1. PA, EC, and DC are equivalent in that:  (in fact obtained previously by Renes 2017 [2])

• There is a one-to-one correspondence between each situations† of PA, EC, and DC.

†Initial states 𝜌𝑍𝐴𝐸 , 𝜌𝑋𝐴𝐵 and functions 𝑓, 𝑔.

• Their performance indices all equal: 𝑄PA,𝑓 𝜌𝑍𝐴𝐸 = 𝑄EC,𝑔 𝜌𝑋𝐴𝐵 = 𝑄DC,𝑔 𝜌𝑋𝐴𝐵 ,

2. (When functions 𝑓, 𝑔 are randomized) The security bounds for PA, 

and the coding theorems for EC and DC are also equivalent:

• Leftover hashing lemma (LHL) for PA: E𝐹𝑄
PA,𝐹 𝜌𝑍𝐴𝐸 ≤ 𝑟 𝐻min 𝑍𝐴|𝐸 𝜌

• Coding theorem for EC: E𝐹𝑄
EC,𝐹⊥ 𝜌𝑋𝐴𝐵 ≤ 𝑟 𝑛 − 𝐻max 𝑋

𝐴|𝐵 𝜌

• Coding theorem for DC: E𝐹𝑄
DC,𝐹⊥ 𝜌𝑋𝐴𝐵 ≤ 𝑟 𝑛 − 𝐻max 𝑋

𝐴|𝐵 𝜌

(With 𝑟 being any function)

Application to QKD

Security criteria using the purified distance

• The security is usually evaluated by the trace distance between the actual and ideal states.

𝑑1 𝜌𝐾𝐸 ≔ 𝜌𝐾𝐸 − 𝜌𝐾𝐸
ideal

1

• Here we instead use the purified distance [1]：𝑄PA 𝜌𝐴𝐸 ≔ 1− 𝐹 𝜌𝐾𝐸 , 𝜌𝐾𝐸
ideal 2

• We do not lose the generality since 1 − 1 − 𝑄PA 𝜌𝐴𝐸 ≤ 𝑑1 𝜌𝐾𝐸 ≤ 2 𝑄PA 𝜌𝐴𝐸
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Renner’s approach:

The Shor-Preskill approach:

Conditions:  1. There exists a pure state 𝜌𝐴𝐵𝐸, which is a purification of 𝜌𝑍𝐴𝐸 or 𝜌𝑋𝐴𝐵,

2. Classical linear functions 𝑓, 𝑔 are dual to each other:

𝑓 = 𝑔⊥ (meaning ker 𝑓 = ker 𝑔 ⊥).

Equivalent (main theorems)

The conventional LHLs (in terms of the trace distance):

One can also derive

The main theorems give a direct connection between Renner’s approach 
and the Shor-Preskill approach to the security proof (Refinement of our previous result [3]).


