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Motivations and Objectives

 Quantum repeaters (QRs): An enabling technology for future quantum networks that allows efficient distribution of entanglement over long distances.
 Main idea: first distribute and store entanglement between short segments and then to use entanglement Ly Lo, L Ly

swapping (ES) and entanglement distillation at intermediate stations to establish entanglement at long distances. -
* This work: Focuses on a scheme where entanglement distillation is achieved by using deterministic

quantum error correction codes (QECCs) [1]; Studies the performance of a QKD system that is run over a QR with three and five-qubit repetition codes

by accounting for various sources of errors in the setup; Specifies the requirements of such systems in practice for near-term implementation.

* Challenge: Simulating erroneous guantum circuits on a classical computer and obtaining the analytical form of the final entangled states after several

nesting levels. The complexity of the analysis grows exponentially with the number of qubits involved. How to minimize the required approximations
while still getting a rather accurate result within reasonable simulation times.

* Method: Employing a novel hybrid numerical-analytical approach that relies on the linearity of the employed quantum circuits, and the transversality
of the code employed.

* Results: New post-selection techniques based on error detection; New efficient QKD decoders; New repeater architectures for NV-centre platforms
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states > We can use error detection, rather than error correction, as a postselection tool Near-term applications in sight!
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