Routing Strategies for Multiplexed,
High-Fidelity Quantum Networks
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Background

Quantum networks distribute entanglement
between users for communication / sensing.

Near-term entanglement protocols are heralded
and probabilistic.
e.g. single-photon (Cabrillo et a/, 1999) protocol

Entanglement heralded
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~. Near-term ("1st gen”) quantum networks
need two-way classical communication.

Difficulties:
» Time needed for 2-way cc = decoherence
 Probabilistic = uncertain routing decision

Integer program framework

Min-cut bound

Quantum network capacity =
— log>(1 — Nmin-cut) €bItS per network use
where Nmin-cut = 1 - MaX ¢ - cut [ eeC (1 o ne)

Nac (PLOB, 2017; Pirandola, 2019)
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But 1st gen networks do not
—O—O—0 achieve single-link capacities,
so the maximum achievable
O—0O=C =0 rate is the min-cut bound.:

! end-to-end rate < P in-cut
= MaX ¢ = qut 2 link e ¢ Piink

L repeater node

Approach:

At each node, maximize expected end-to-end
entanglements conditional on local link state

(assuming optimal routing at other nodes).

Objective function: f(x, u, v) = number of
swaps between (x, u) and (X, v) O-4

Under this approach, 6 0

» f(X, u, v) is determined 2‘6‘}1_5
separately from how modes at T )
(x, u) and (X, v) are matched:; |

« the objective function can be approximated by
a linear function of f(x, -, ).

Choose other weights g(x, u, v) for the linear
objective function in f(x, u, v) = get a collection
of routing strategies based on integer programs:

MaX ¢y, -, ) 2 (u, v) ~x 9% U, V) X £(X, U, V).

Possible weights:
» Original expected rate maximization weights
derm(X, U, V) = P(u, v separated by link state’s min-cut)

 Distance weights
Jaictance(X, U, V) = exp( — dist(Alice, u) — dist(Bob, v))

w(x, u) =
link state

4 x 4 square grid
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Results
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 The achievable

Local routing

Consider minimum-latency networks: make
routing decisions using only local link state info,
to minimize decoherence & increase fidelity.

Also, previous work (Pant et a/. 2019) showed
that (local) multi-path routing raises rates.

 Int. programs

Role of multiplexing

If repeaters have all-to-all local connectivity,
(arXiv:2005.01852)

T multiplexing = more than linear 1 in rate
= closer to min-cut bound.

e.g. length-N repeater chain, m modes per link:
Rate = mpy;, (1 — [2 log N / mp; 1°-)
— Prin-cut = MPjnc When multiplexing m — oo.

 Int. programs
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End-to-end entanglement rate / min-cut bound

(ERM, distance
weights) do
better than
fixed path
algorithms.
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