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Information-theoretically secure signatures

All practical signature schemes depend on assumptions about the computational hardness of certain problems. Unconditionally
secure signatures have been designed |1, 2, 3|, but they require a fixed set of participants and involve a large amount of communication.
Furthermore, they require either a trusted third party or secret channels between pairs of participants.

Gottesman and Chuang [4] introduced quantum digital signatures, which are also unconditionally secure but alleviate some of these
disadvantages. Mind you, now the verifiers are supposed to have long-term quantum memory. At some point in the future this may

become realistic.

Our contribution is a variant of the Gottesman-Chuang scheme that requires less quantum memory. It is based on a different use ot

fingerprinting states and a generalisation to non-binary alphabets.

1. The Lamport signature

How to sign a bit; based on one-way function f |5].
o Private key kg, k1. Public key (P, P1) with P, = f(k;).

e Signing a message m € {0, 1}: publish &,,.
e Verification: check if hashing the published k,, yields P,,.

e Keys are discarded after a single use.

The security is based on the assumption that f is difficult to invert. Quantum digital
signatures are inspired by the Lamport scheme, but they make use of information-theoretic
one-wayness.

3. Fingerprinting states

Let H be a d-dimensional Hilbert space with basis [0),---,|d — 1). Let z € {0,1}%. The
fingerprinting state |F'(x)) is defined as |6]
d—1

(1)

This state is created using d classical bits of information, but at most log dim ’H = logd
bits can be learned via measurement. |F(x)) is a compact representation of x that hides x.

5. Our scheme

Alphabet S = {0,...,S — 1}. Message m € S&. Codeword C,, € SV,
o Private key ki, ..., ky, with k; € {0,1}¢. Public key |P)) - - - | Py), with |B) = |F(k;)).

e Signing: For each i € {1,..., N} reveal part of k;.
If C),i] = s then reveal k; except for a small window of width d/S at ‘position’ s.
The choice of window encodes a symbol in §.

e Verification: Project | P;) onto the sum of all 2¢/° fingerprinting states that are consistent
with the revealed part of k£;. Number of ‘0’ outcomes must be sufficiently low.
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a=1/S. Fach curve was created by varying d. For comparison:
Gottesman-Chuang spends > 13.3 qubits per message bit at T = 1000 verifiers.

2. GGottesman-Chuang signature

How to sign a bit; based on the one-wayness of quantum state preparation [4].

o Private key ko, kp is classical. Public key |F),|P;) consists of two quantum states.
|Py) = |F(ky)), |P1) = |F(k1)). Here F'is a mapping that embeds a bitstring in a Hilbert
space (e.g. fingerprinting states).

e Signing a message m € {0,1}: Publish k,,.
e Verification: Project state |P,,) onto direction F(k,,) and check if result is ‘1",
e Keys are discarded after a single use.

In order to reduce tfalse positives, each verifier gets multiple copies of the public key.

4. Efficient Gottesman-Chuang

More efficient use of resources than public key repetition [4].
Message m € {0, 1}, Error-correcting code with codewords in {0, 1}". Codeword c,,.

e The bits of ¢, are individually signed as above; verifiers hold only one copy of each |P).
e Verifier counts number of ‘0’ projection outcomes. Must be sufficiently low.

Ay =~ T'log T, with T" = number of verifiers.
#qubits spent per message bit: more than log(7T"logT').

Discussion

e Increasing the data density by a factor log S only adds a term log S to the size of
a public key.

e The improvement factor 1/log .S in (2) due to the increased alphabet is hampered slightly
by the growing d,, ~ ST log ST, but overall it is favorable to increase S.

e The effect of allowing £ to be opened in multiple ways is that forgery becomes easier.
This has to be counteracted by increasing the message length in order to achieve distin-
ouishability between an attacker’s error rate and the genuine error rate.
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