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2. Method

There is a large gap between theory and practice in quantum key distribution (QKD) because real devices do not satisfy the assumptions required by the security proofs.

We close this gap by introducing a simple and practical measurement-device-independent-QKD type of protocol, based on the transmission of coherent light, for which

we prove its security against any possible imperfection and/or side channel from the quantum communication part of the QKD devices. Our approach only requires to

experimentally characterize an upper bound of one single parameter for each of the pulses sent, which describes the quality of the source. Moreover, unlike device-

independent (DI) QKD, it can accommodate information leakage from the users’ laboratories, which is essential to guarantee the security of QKD implementations.

I. Each round Alice (Bob) sends the state 𝜈 ( 𝜔 ) to the untrusted node

Charles with probability 𝑝𝜈 (𝑝𝜔 ), where 𝜈, 𝜔 ∈ {𝛼,−𝛼, vac} . In

particular, the state |𝛼⟩ (| − 𝛼⟩) is a coherent state with amplitude 𝛼
(−𝛼) and it is associated with the bit value 0 (1), while the vacuum state

vac is only used for parameter estimation.

II. If Charles is honest, he causes the incoming pulses to interfere using a

50:50 beam splitter followed by two threshold detectors, and announces

the measurement outcome Ω.

III. After N rounds, Alice and Bob reveal part of their state choices to

estimate both the bit and the phase error rates. Finally, they perform

standard error correction and privacy amplification techniques to

obtain, with high probability, a secret key.

Below the rate-loss performance of the protocol is shown (solid lines) in the presence

of side channels (for simplicity, we set 𝜖𝜈,𝜔 = 𝜖). The dark-count probability of

Charles’ detectors is 𝑝𝑑 = 10−8 . For comparison purposes, the rate-loss

performance of a highly optimistic CHSH-based DI-QKD protocol that uses

parametric down-conversion sources, qubit amplifiers and photon-number-resolving

detectors is also included (dashed lines).

3. Numerical results

Transmitted states

For each particular round of the protocol, the joint state transmitted by Alice and Bob

can always be written as

Ψ𝜈,𝜔 𝑇
= 1 − 𝜖𝜈,𝜔 𝜙𝜈,𝜔 𝑇

+ 𝜖𝜈,𝜔 𝜙𝜈,𝜔
⊥

𝑇
,

where 𝜖𝜈,𝜔 ∈ 0,1 ; 𝜙𝜈,𝜔 𝑇
≔ 𝜈 𝑎 𝜔 𝑏 𝜏 𝐸 is the joint state ideally transmitted by

Alice and Bob when they select 𝜈 and 𝜔, respectively; |𝜏⟩ is a state that contains no

information about 𝜈 and 𝜔; and 𝜙𝜈,𝜔
⊥

𝑇
is a state orthogonal to 𝜙𝜈,𝜔 𝑇

. That is, the

previous equation represents the most general description of the transmitted states,

which means that it allows us to characterize any potential state preparation flaw or

information leakage about the internal settings of Alice and Bob.

Phase-error probability

In order to calculate the secret key rate, we first estimate, from the observed statistics,

the phase-error probability for those rounds that are used for key generation. For this,

we note that any of these rounds can be equivalently described by a fictitious scenario

in which, instead, Alice and Bob prepare the entangled state

Ψvir
𝐴𝐵𝑇

=
1

2
σ𝑗,𝑠=0,1 𝑗𝑧, 𝑠𝑧 𝐴𝐵 Ψ −1 𝑗𝛼, −1 𝑠𝛼

𝑇
,

with { 0𝑧 , |1𝑧⟩} being the computational basis for the ancilla systems A and B. Now, let
෡𝒟 be the positive operator-valued measure element associated with Charles’ successful

announcement. Then, the phase error probability can be expressed as

Γ = ⟨Ψvir|෡𝒟ph|Ψ
vir⟩,

where ෡𝒟ph = (|0x, 0x⟩⟨0x, 0x| + |1x, 1x⟩⟨1x, 1x|) ⊗ ෡𝒟 , and 𝑗x =
1

2
(|0𝑧⟩ +

−1 𝑗|1𝑧⟩ ).

Reference States

In order to relate the phase-error probability to the observed statistics 𝑌𝜈,𝜔 =

⟨Ψ𝜈,𝜔
෡𝒟 Ψ𝜈,𝜔⟩ we define a set of states {|Φ𝜈,𝜔⟩} called reference states1. These states

are never prepared in the actual protocol (they are used just as a mathematical tool),
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and they should be similar to the ideally transmitted states. The key point is that the

phase-error probability Γref = ⟨Φvir|෡𝒟ph|Φ
vir⟩ of these reference states (where |Φvir⟩

is analogous to |Ψvir⟩ but for the reference states) can be easily related to the fictitious

statistics 𝑌𝜈,𝜔
ref = ⟨Φ𝜈,𝜔

෡𝒟 Φ𝜈,𝜔⟩ that the users would have observe if they had used the

reference states in the actual experiment. In particular, by choosing an appropriate set

of reference states, one can obtain a linear relation as

Γref = 𝐟 𝐘𝐫𝐞𝐟,

where 𝐟 is a row vector and 𝐘𝐫𝐞𝐟 is a column vector containing the yields 𝑌𝜈,𝜔
ref.

Bounding deviations

Since the reference states are similar to the actual states, one expects that Γ ≈ Γref and

𝑌𝜈,𝜔
ref ≈ 𝑌𝜈,𝜔. This can be exploited to estimate Γ from the observed statistics 𝑌𝜈,𝜔. In

particular, one can upper bound the phase error probability as

Γ ≤ 𝐺+(Γref
U , 𝛿vir

L ),

where 𝐺+ is a known function, Γref
U is an upper bound on Γref, and 𝛿vir

L is a lower
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Γ

Γref 𝑌𝜐,𝜔
ref

𝐺± 𝐺±

𝐟

𝑌𝜐,𝜔

bound on ⟨Φvir|Ψvir⟩ that only depends on

the quantities 𝜖𝜈,𝜔.

Finally, Γref
U can be related to the actual yields

𝑌𝜈,𝜔 by using again some known functions 𝐺+
and 𝐺− that allow to bound the reference

yields in 𝐘𝐫𝐞𝐟 from the actual yields.

Importantly, we remark that the security of

this protocol relies on the characterization of

valid upper bounds on the quantities 𝜖𝜈,𝜔 that

account for the side-channel information.


