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Figure	4: The	real	(Re)	and	
imaginary	(Im)	parts	of	the	

reconstructed	density	matrices	of	
the	generated	states	measured	by	
quantum	state	tomography	using	
the	setup	in	Fig.	2	for	(a)	type-0	
SPDC	source	(b)	type-2	SPDC	

source,	respectively.	Here	“0”	≡|V	〉
and	“1”	≡|H〉.

Figure	3.	Coincidence	measurements	at	2.1	μm.	
• Measured	coincidence-to-accidental	ratio	(CAR)	as	a	
function	of	the	averaged	single	count	rates	between	
detectors	1	and	2,	for	the	(a)	type-0	and	(b)	type-2	
sources.	The	insets	show	the	plots	on	logarithmic	
scales.	The	‘single’	counts	include	the	detector	dark	
count	rates	of	~500	Hz	in	each	arm.

• For	the	type-0(2)	measurement,	we	projected	the	
state	onto	|V,V	〉(|V,H	〉)	and	measure	a	CAR	of	607	
±185	(354±127),	~3	times	the	state-of-the-art.

I.			Introduction	and	Motivation
Quantum-enhanced	optical	systems	operating	within	the	
2−2.5	μm spectral	region	have	the	potential	to	revolutionize	
emerging	applications	in	communications,	sensing	and	
metrology.	

However,	until	now,	sources	of	entangled	photons	have	been	
realized	mainly	in	the	near-infrared	700−1550	nm	spectral	
window.	

Above	2	µm	lies	an	atmospheric	transparency	window	with	
nearly	one-third	of	the	solar	blackbody	radiation	of	what	is	
typical	at	telecom	wavelengths	[1]	(see	Fig.	1).	

This	makes	the	2−2.5	μm spectral	region	highly	promising	for	
quantum-secured	links,	such	as	for	daylight	satellite-to-
ground	and	satellite-to-satellite	quantum	communications.

Guided-wave	optics	is	also	rapidly	developing	into	the	2-µm	
region	to	satisfy	the	need	for	larger	bandwidths	due	to	the	
increasing	volumes	of	data	traffic.	

Solutions	such	as	novel	hollow-core	photonic	bandgap	fibres	
working	in	the	mid-infrared	offer	reduced	optical	
nonlinearities	and	lower	losses	and	are	currently	under	test	
for	network	implementations.

Figure	2:	Generation	and	full	tomography	of	
polarization	entangled	photons	at	2.1μm.	

• The	setup	consists	of	mirrors	(M1/2),	attenuator/energy	
controller	(EC),	lenses	(L1	and	FC1/2),	the	PPLN	crystal	
(C),	Ge	filter	(F0),	a	D-shaped	pickoff	mirror	(D),	50-nm-
passband	filters	(F1/2),	halfwave	plates	(H1/2),	quarter-
wave	plates	(Q1/2),	polarizers	(P1/2),	single-mode	
fibers	(SMF1/2),	superconducting	nanowire	single-
photon	detectors	(SNSPD1/2).

• We	used	periodically	poled,	magnesium-doped	lithium	
niobate	crystals	(MgO-PPLN;	Covesion	Ltd.),	with	lengths	
1	mm	and	0.3	mm	cut	for	type-0	and	type-2	phase	
matching,	respectively.	

II.			Summary	of	Key	Results
• Using	custom-designed	lithium	niobate	crystals	for	
spontaneous	parametric	down-conversion	and	tailored	
superconducting-nanowire	single-photon	detectors,	we	
demonstrate:

• Full-state	quantum	tomography	and	near-maximal	
two-photon	entanglement	at	2.1μm.

• Capability	of	the	measured	state	for	device-
independent	(DI)	quantum	key	distribution	(QKD).

III.	Experimental	Setup

IV.	Coincidence	to	Accidentals	Ratio	

V.	Quantum	State	Tomography VI.	Entanglement	@	2.1μm	&	Suitability	for	DI	QKD

For	more	
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Figure	1:	
Solar	photon	
flux	density	
at	sea	level	
[1].	Inset:	
Mauna	Kea	sky	
infrared	
transmission	
spectrum.	In	
yellow	(red)	a	
100	nm	band	
around	1550	
(2100)	nm.

Figure	5:	Motivation	for	future	QKD	work	
at	2.1	μm. Simulation	of	lower	bounds	on	
secure	key	rates	for	DI	QKD	at	2.1	μm,	1.55	
μm	and	770	nm	in	free-space	at	day-time,
based on the data in Fig. 1. Secure	key	rates	
R	for	DIQKD	[4,5]	as	functions	of	the	number	
of	photons	per	pulse	μ	and	total	channel	
efficiency	η	at	different	wavelengths.	

We obtain:
• CHSH-Bell	parameter
S	= 2.7	± 0.03	>	2	(local	bound)

• Entanglement	of	Formation:	EF=0.6746
• Concurrence:	C=	0.7642

Self-testing	for	singlet	state:
Threshold	for	CHSH	Bell	parameter	
S’	=	(16	+	14√2/17)	≈	2.11,	and	S=2.7	>	S’

Weak	form	of	Self-testing	[6]	
• Certifies	the	quantum	state	without
full	determination	of	the	measurement.

• Not	previously	been	addressed	
experimentally

• We	show	a	violation	of	the	three-setting	
inequality	with	β		=	4.77	>	4	(local	bound)

For	an	Ekert91-based	QKD protocol	[7],	
we	compute
• Quantum	bit	error	rate	(QBER):	5.43%	
• Lower	bound	on	the	DI	secure	key	rate:
R	=	0.417	bits/pair	>	0

(a)	Type-0	state:	|V,V	〉
Pair	detection rate:	13	Hz

State	purity:	99%
Fidelity: 99.5%

(b)	Type-2	state:	(|H,V	〉-|V,H	〉)	/√2
Pair	detection	rate:	2.27	Hz	

State	purity: 82.55%
Fidelity: 83.13%• The	integration	time	was	30	

minutes	for	each	measurement.


