
A Software Tool for Mapping and Executing
Distributed Quantum Computations on a Network Simulator

D. Ferrari,∗†@ S. Nasturzio,∗ M. Amoretti∗†@

∗Department of Engineering and Architecture - University of Parma, Italy, †Quantum Information Science @ University of Parma, Italy,
@davide.ferrari1@unipr.it,michele.amoretti@unipr.it

Abstract
The growing demand for large-scale quantum computers is motivating research on dis-
tributed quantum computing (DQC) architectures [1]. To support the research com-
munity in the design and evaluation of distributed quantum protocols, many simulators
have been devised to aid with the construction of the topology and the deployment of
computations on it [2, 3, 4, 5]. However, the process of setting up a simulation requires
strong expertise in the simulator itself, thus being inconvenient for those who are only
interested in quantum protocol evaluation or in the design of supporting tools such as
quantum compilers. In this work, we present a software tool denoted as DQC Executor,
that accepts as input the description of the network and the code of the algorithm, and
then executes the simulation by automatically constructing the network topology and
mapping the computation onto it, in a framework-agnostic way and transparently to the
user.

DQC Executor
The tool is in its early stages and currently supports automatic deployment of distributed
quantum algorithms to the NetSquid [5] simulator, which allows a detailed physical mod-
eling of individual network components. The description of the network is provided by
the user in a specific YAML format. The distributed algorithm, instead, is defined with
the OpenQASM [6] language.

NetSquid is one of the most advanced platform for simulating quantum network-
ing and modular computing systems subject to physical non-idealities. It ranges from the
physical layer and its control plane up to the application level. This is achieved by integrat-
ing several key technologies: a discrete-event simulation engine, a specialized quantum
computing library, a modular framework for modeling quantum hardware devices, and an
asynchronous programming framework for describing quantum protocols.

Open source code available at: https://github.com/qis-unipr/dqc-executor

Network Description with YAML
The first step in constructing a distributed quantum simulation is defining the structure
and topology of the network in terms of nodes, connections, QPU’s qubit map, and inter-
node ebit coupling map. The DQC Executor tool can do this with a YAML formatted file.
The choice of such format is due to its straightaway integration with NetSquid-NetConf
snippet, a customizable open-source extension to NetSquid’s framework for automatic
network setup.
network: main_network

ebit_coupling_map:
entries:

- alice[2] <-> bob[2]
- alice[2] <-> charlie[1]

components:
alice:

type: quantum_node
properties:

n_of_qubits: 3
ebits:

- 2
bob:

type: quantum_node
properties:

n_of_qubits: 3
ebits:

- 2
topology:

- 0,2
- 2,0
- 1,2
- 2,1

charlie:
type: quantum_node
properties:

n_of_qubits: 2
ebits:

- 1

quantum_connection_bob_alice:
type: quantum_connection
properties:

length: 20
connect_to:

node1: alice
node2: bob

quantum_connection_alice_charlie:
type: quantum_connection
properties:

length: 20
connect_to:

node1: alice
node2: charlie

A network such as the one illustrated in Figure 1 can be described with the YAML file
shown above. Note that one must specify connections between nodes and which qubits
in each node will be used as ebits. It is also possible to accurately describe the internal
topology of each node, which is otherwise assumed to be all-to-all.

0

1

0

1

0

alice bob

charlie

2 2

1

Figure 1: Example of network topology.

Distributed Algorithms with OpenQASM
Currently, DQC Executor only supports QASM files were all qubits of a QPU, including
ebits, fit inside a single register. The mapping between between registers and nodes, as
well as qubits int a register and ebits, is derived from matching the nodes’ names and
ebits numbering in the YAML file with registers’ names and qubits indexes in the QASM.
Regarding the new operations needed for a distributed algorithm, they are defined as
opaque gates inside the QASM itself, and then parsed by Qiskit QASM’s Parser. After
the circuit has been parsed, one can visualize it and note that the opaque gates are rep-
resented by boxes, as shown in Figure 2, their implementation left to be specified later
on in the simulation.

OPENQASM 2.0;
include "qelib1.inc";
opaque entangle e1, e2;
opaque remoteCX c,e1,t,e2;

qreg alice[3];
qreg bob[3];
qreg charlie[2];

h alice[0];
cx alice[0], alice[1];
entangle alice[2], bob[2];
remoteCX alice[0], alice[2], bob[0], bob[2];
entangle alice[2], bob[2];
remoteCX alice[0], alice[2], bob[1], bob[2];
entangle alice[2], charlie[1];
remoteCX alice[0], alice[2], charlie[0], charlie[1];

Figure 2: Example of circuit creating a shared GHZ state.

Tool Structure
As depicted in Figure 3, DQC Executor is characterized by three main running phases:
input parsing, pre-processing, and simulation. The first one concerns the parsing of the
YAML configuration file and the OpenQASM description, to extract the required infor-
mation. The pre-processing phase sets up all the components required for the simulation,
verifies the coherence of the algorithm and the topology, establishes connections between
nodes, and finally constructs the simulation protocols that will be executed by the simu-
lated nodes. The final phase is indeed the execution of the computation by each node,
which receives the whole quantum circuit and starts executing only the gates that pertain
to it.

Topology

Algorithm

NetConf Snippet
Extended

Qiskit
QASM Parser

YAML

QASM

Input Parsing

Pre-Processing

Classical Registers
Initialization

Quantum Register
Check

Classical Channels
Setup

Coupling Map
Check

Simulation

Network

Coupling Map

Quantum Circuit

Protocol Execution (Node 0)

Protocol Execution (Node N)

Figure 3: Structure of the DQC Executor.

References
[1] D. Ferrari, A. S. Cacciapuoti, M. Amoretti, and M. Caleffi. Compiler Design for Distributed Quantum Computing. IEEE Transactions on Quantum

Engineering, (4100720):1–20, 2021.
[2] A. Dahlberg and S. Wehner. SimulaQron - a simulator for developing quantum internet software. Quantum Science and Technology, (1):015001, 2018.
[3] S. Diadamo, J. Notzel, B. Zanger, and M. M. Bese. QuNetSim: A Software Frameworkfor Quantum Networks. IEEE Transactions on Quantum Engineering,

pages 1–1, 2021.
[4] T. Matsuo. Simulation of a Dynamic, RuleSet-based Quantum Network. arXiv: 1908. 10758 , 2021.
[5] T. Coopmans, R. Knegjens, A. Dahlberg, D. Maier, L. Nijsten, J. Oliveira, M. Papendrecht, J. Rabbie, F. Rozpędek, M. Skrzypczyk, L. Wubben,

W. de Jong, D. Podareanu, A. Torres Knoop, D. Elkouss, and S. Wehner. NetSquid, a NETwork Simulator for QUantum Information using Discrete
events. Communications Physics, 4(1):164, 2021.

[6] A. W. Cross, L. S. Bishop, J. A. Smolin, and J. M. Gambetta. Open Quantum Assembly Language. arXiv: 1707. 03429 , 2017.

https://github.com/qis-unipr/dqc-executor
https://github.com/qis-unipr/dqc-executor
http://arxiv.org/abs/1908.10758
http://arxiv.org/abs/1707.03429

