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Objectives

In this work, we develop upper bounds for key
rates for device-independent quantum key distri-
bution (DI-QKD) protocols and devices. We show
that the convex hull of the currently known bounds
is a tighter upper bound on the device-independent
key rates of standard CHSH-based protocol. We
further provide a tighter upper bound based on rel-
ative entropy based bound for DI-QKD key rates
achievable by any protocol applied to the CHSH-
based device. Next, we show that the device-
independent private capacity for the CHSH based
protocols on depolarizing and erasure channels is
limited by the secret key capacity of dephasing
channels.

Result 1 - Convex bound

We define cc-squashed entanglement as:
Ecc
sq(ρAB,M) := inf

ΛE

I(A : B|E)M⊗ΛE(ψρ),

where ρAB is a quantum state, M := M x̂
a ⊗M ŷ

a corre-
sponding to measurements on Alice’s and Bob’s sys-
tem, and ΛE is a quantum channel on the E system.
We define the reduced cc-squashed entanglement as:
Ecc
sq,dev(ρAB,M(x̂, ŷ)) := inf

(σ,N )=(ρ,M)
Ecc
sq(σAB,M(x̂, ŷ)),

where the infimum is over all quantum strategies
(σ,N ) which yield the same probability distribution
p(a, b|x, y). Then from [1],

K
iid,(x̂,ŷ)
DI,dev (ρ,M) ≤ Ecc

sq,dev(ρ,M), (1)

whereK iid,(x̂,ŷ)
DI,dev (ρ,M) is the standard device indepen-

dent key rate of the distribution of quantum strat-
egy (ρ,M). For these protocols, we assume that
the key generation rounds involve the measurements
M x̂

a ⊗M
ŷ
b . By proving the convexity of the re-

duced cc-squashed entanglement, we conclude
that the convex hull of the upper bounds proved in
[1, 2], is also an upper bound on device independent
key rate.

Figure 1: In this figure, we show the plots for standard device-
independent CHSH protocol obtained in Refs. [1], [2], and the
upper bound obtained in this work, which is the convex hull of
the former bounds, depicted in green.

Result 2 - Splitting bound

The maximal DI-QKD rate K iid
DI(ρ,M) of a device

(ρ,M) is upper bounded as
K iid
DI,dev(ρ,M) ≤ (1− p) inf

(σNL,N )=(ρNL,M)
ER(σNL)+

p inf
(σL,N )=(ρL,M)

ER(σL), (2)

where ER(ρ) is the relative entropy of entanglement
of the bipartite state ρ,

ρ = (1− p)ρNL + pρL (3)
such that σL, ρL ∈ LHV and σNL, ρNL /∈ LHV. Here,
LHV denotes the set of states having a local hidden
variable model.
A consequence of the above theorem is the following
result: The maximal DI-QKD rateK iid

DI,dev(ρ,M) of a
device (ρ,M) under CHSH protocol PCHSH, is upper
bounded as
K iid
DI,dev(ρ,M) ≤ (1− p) inf

(σbl,N )=(ρbnl,M)
ER(σbnl),

(4)
where ρ = (1 − p)ρbnl + pρbl and ρbl denotes state
satisfying CHSH inequality and ρbnl denotes state vi-
olating CHSH inequality.
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Figure 2: In this plot, we depict the bounds on the amount of DI
key that can be obtained from a CHSH-based device. The yellow
line and green line corresponds to two upper bounds obtained
from (4). The blue line corresponds to the bound obtained in
Appendix B of [1]. The purple line corresponds to the bound
obtained in [3]. The red line corresponds to the lower bound.
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Result 3 - DI-QKD capacity bound

The DI-QKD capacity of the device (id⊗Λ, ρ,M)
under the assumption of its iid uses assisted with i-
way communication between allies outside the device
and j-way communication between the input-output
rounds within the device, is given by [4]
P
IDIj
i (id⊗Λ, ρ,M) := inf

ε>0
lim sup
n→∞

µ
IDIj,ε
i,n (id⊗Λ, ρ,M),

(5)
where µIDIj,εi,n (id⊗Λ, ρ,M) is the maximum key rate
optimized over all viable privacy protocols P̂ over the
iid uses of device, and also includes a minimization
over the possible iid devices IDIj that are compatible
with the honest device. For the class of channels Λ
that are simulable via LOCC and the respective Choi
states as resource, the following upper bounds hold:
P
IDIj
i (id⊗Λ, ρ,M) ≤ inf

(id⊗Λ′,σ,N)∈IDIj
(id⊗Λ′,σ,N)=(id⊗Λ,ρ,M)

ER(ΦΛ′),

(6)
where ΦΛ′ := Λ′(Φ+) is the Choi state of the chan-
nel Λ, with Φ+

A′B := 1
d

∑d−1
i,j=0 |i, i〉 〈j, j|A′B denot-

ing a maximally entangled state of Schmidt rank
d = min{|A′|, |B|}. For some well known channels,
we plot the upper bounds in Fig 3.
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Figure 3: In the above figure, we plot upper bounds on the
device-dependent QKD capacities of depolarizing channel (yel-
low line), dephasing channel (blue line) and erasure channel
(green line). We notice that the upper bounds for erasure and
dephasing channels are achievable device-dependent QKD rates
(capacities). We then notice that for the CHSH protocols, the
upper bounds on the DI-QKD capacities of channels is limited
by the device-dependent QKD capacity of dephasing channels.
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