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Our aim: Computing finite size key rates for QKD against coherent attacks. 
Two challenges that need to be addressed:

- Cover largest possible class of protocols
- Obtain good key rates (w. r. t. scaling with dimension and block 

size)

Our method: combine two existing tools
- Entropy accumulation theorem (EAT) [1,2,3]
- Numerical framework [4] for asymptotic QKD key rates using 

convex optimization

Our result: Algorithm to compute finite-size key rates for entanglement-based
QKD protocols which satisfy an additional restriction (see sufficient conditions 
for Markov chain conditions below)

Background: Entropy Accumulation Theorem

Introduction

Diagrammatic depiction of EAT process. ℳ௜’s are EAT channels, 𝐸, 𝑅௜’s, 𝑆௜’s and 𝑃௜ are quantum 
registers,  𝑋௜’s are classical registers that are a function of (𝑆௜ , 𝑃௜).

EAT Theorem [1,2]: For EAT channels satisfying the Markov chain condition, 
given a min-tradeoff function 𝑓, set of accepted statistics Ω, and ℎ ∈ ℝ s.t. 𝑓 �⃗� ≥ ℎ ∀ �⃗� ∈ Ω, it is the case that𝐻୫୧୬ఌ 𝑆ଵ௡ 𝑃ଵ௡𝐸 ≥ 𝑛ℎ − 𝒪 𝑛 .

An EAT channel ℳ௜ describes the operation of the device in round 𝑖 and is a 
CPTP map 𝑅௜ିଵ → 𝑆௜𝑃௜𝑅௜ composed with a CPTP map 𝒯௜: 𝑆௜𝑃௜ → 𝑋௜
A min-tradeoff function 𝑓 lower bounds the entropy generated per round 𝑖
for any state admitting statistics �⃗� under testing 𝒯௜ for each possible �⃗�

Definitions (simplified)

New sufficient Conditions for Markov Condition

New algorithms for Min-Tradeoff Functions

1. Find suboptimal solution �̅� for the nonlinear SDP for given statistics �⃗�. 
2. Solve dual SDP of the linearization at the suboptimal solution. 
3. The dual variable gives the coefficients of a valid min-tradeoff function. 
NB: - similar to the asymptotic numerical algorithm [4] 

- Optimal min-tradeoff function obtained by optimizing over �⃗�
NB: - Modified objective function compared to of Algorithm 1 to include 
leading corrections to the key rate from EAT.

- Derive the new primal problem using Fenchel duality
1. Use convex optimization solver to find a suboptimal solution for the 

primal problem.
2. Solve the dual problem of the linearization.
3. The dual variable gives the coefficients of a valid min-tradeoff function.

Applications

Possible Future Work
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Six-state four-state protocol [5]

High-dimensional 2-mutually unbiased bases

Key rate versus the number of signals by using two
versions of EAT for the second-order correction terms:
Dupuis, Fawzi (2019) [2] and Dupuis (2021) [3].

Key rate versus the number of signals for 
comparison of two algorithms

Key rate versus the number of signals for 
comparison of two algorithms

Key rate versus the number of signals different
prime dimension d = 2,3, 5, 7 of the d-
dimensional 2-MUB protocol. It uses Algorithm 2
and the second-order correction term from
Dupuis (2021) [3].

• Investigate more complicated protocols such as optical implementations
• Generalize results to hold for prepare-and-measure protocols

Algorithm 1 Finds optimal min-tradeoff function (asymptotic terms only)

Algorithm 2 Finds best min-tradeoff function 
(asymptotic and leading O ଵ௡ corrections)

Diagrammatic depiction of algorithms abstractly: g is the objective function. 

Markov chain conditions:
• The Markov conditions require that  𝑆ଵ௜ିଵ ↔ 𝑃ଵ௜ିଵ𝐸 ↔ 𝑃௜  𝑖 ∈ [𝑛] hold on the 

output of the process, i.e., there is a Markov chain structure for all rounds.
• Markov conditions are difficult to verify except in the simple case where the 

public announcements are privately seeded. 
• We identify a more general condition ensuring the Markov chain conditions.

New sufficient conditions: 
• The measurements operators are block diagonal.
• In each block, the probability of a given announcement is the same.

Proof Sketch: Eve’s optimal attack will also have the block diagonal form. The 
form guarantees the Markov chain structure on the optimal attack.

We provide two algorithms for construction min-tradeoff functions.

Key rate versus the number of signals by using two
versions of EAT for the second-order correction terms:
Dupuis, Fawzi (2019) [2] and Dupuis (2021) [3].


