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Introduction

Our aim: Computing finite size key rates for QKD against coherent attacks.
Two challenges that need to be addressed:
- Cover largest possible class of protocols
- Obtain good key rates (w. r. t. scaling with dimension and block
size)

Our method: combine two existing tools
- Entropy accumulation theorem (EAT) [1,2,3]
- Numerical framework [4] for asymptotic QKD key rates using
convex optimization

Our result: Algorithm to compute finite-size key rates for entanglement-based
QKD protocols which satisfy an additional restriction (see sufficient conditions
for Markov chain conditions below)

Background: Entropy Accumulation Theorem
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Diagrammatic depiction of EAT process. M;’s are EAT channels, E, R;’s, S;’s and P; are quantum
registers, X;’s are classical registers that are a function of (S;, P;).

Definitions (simplified)

EAT Theorem [1,2]: For EAT channels satisfying the Markov chain condition,
given a min-tradeoff function f, set of accepted statistics (), and h € R s.t.
f(P) = hVpELQ,itisthe case that

HEin (SPIPIE) > nh — O(yn).

An EAT channel M; describes the operation of the device in round i and is a
CPTP map R;_; — S;P;R; composed with a CPTP map 7;: S;P; = X;

A min-tradeoff function f lower bounds the entropy generated per round i
for any state admitting statistics ¢ under testing J; for each possible g

New algorithms for Min-Tradeoff Functions

We provide two algorithms for construction min-tradeoff functions.

[Algorithm 1 ] Finds optimal min-tradeoff function (asymptotic terms only)

1. Find suboptimal solution p for the nonlinear SDP for given statistics g.
2. Solve dual SDP of the linearization at the suboptimal solution.
3. The dual variable gives the coefficients of a valid min-tradeoff function.
NB: - similar to the asymptotic numerical algorithm [4]

- Optimal min-tradeoff function obtained by optimizing over g

[Algorithm 2 ] Finds best min-tradeoff function
1
N
NB: - Modified objective function compared to of Algorithm 1 to include
leading corrections to the key rate from EAT.
- Derive the new primal problem using Fenchel duality
1. Use convex optimization solver to find a suboptimal solution for the
primal problem.
2. Solve the dual problem of the linearization.

3. The dual variable gives the coefficients of a valid min-tradeoff function.
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(asymptotic and leading O ( ) corrections)
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Diagrammatic depiction of algorithms abstractly: g is the objective function.

New sufficient Conditions for Markov Condition

Markov chain conditions:

* The Markov conditions require that S!™! < PI"1F < P; i € [n] hold on the
output of the process, i.e., there is a Markov chain structure for all rounds.

* Markov conditions are difficult to verify except in the simple case where the
public announcements are privately seeded.

* We identify a more general condition ensuring the Markov chain conditions.

New sufficient conditions:
* The measurements operators are block diagonal.
* In each block, the probability of a given announcement is the same.

Proof Sketch: Eve’s optimal attack will also have the block diagonal form. The
form guarantees the Markov chain structure on the optimal attack.

Possible Future Work

* |nvestigate more complicated protocols such as optical implementations
 Generalize results to hold for prepare-and-measure protocols
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Key rate versus the number of signals by using two
versions of EAT for the second-order correction terms:
Dupuis, Fawzi (2019) [2] and Dupuis (2021) [3].

Key rate versus the number of signals for
comparison of two algorithms

Six-state four-state protocol [5]
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Key rate versus the number of signals for
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High-dimensional 2-mutually unbiased bases
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