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Introduction

• Many protocols use phase randomised signals, for eg.- Weak Coherent Phase
BB84. Driving the laser diodes far below the threshold usually randomises the
phase. However, for higher repetition rates, the photons from the previous pulse
might not all disappear from the laser cavity. These photons might seed the phase
of the next laser pulse and cause phase memory in the form of coherences.

• Here, we investigate the impact of these partial coherences on the key rate.

• Previous work [1, 2] on source defects deals with generic source defects and
Trojan horse attacks. As we make more assumptions and investigate only imper-
fections that arise as a result of partial coherences, we are able to tolerate larger
imperfections than their work.

Our Contributions

• We provide a reduction of a general source with partial phase coherence moti-
vated by a physical picture, and provide a reduction to a simplified source model.

• We derive analytical tools that allow us to analyze the secret key rates in a decoy
state protocol approach for these sources using our numerical tool box.

• To demonstrate the power of our approach, we apply our tools to the 3-state pro-
tocol for which experimental realizations exists that measure the relevant source
imperfection.

Simplified Model

Actual Laser State
ρµlaser =

∫
dφ1. . .dφn p(φ1 . . . φn)|√µeiφ1〉〈√µeiφ1| ⊗ . . .⊗ |√µeiφn〉〈√µeiφn|

Model Laser State
ρµmodel = q

∫
dφ

1

2π
|√µeiφ〉〈√µeiφ|⊗n + (1− q)|√µ〉〈√µ|⊗n

q := min
i

min
φi

2πp(φi|φ1 . . . φi−1) is a parameter that must be experimentally charac-

terised which represents the degree to which the states are fully phase randomised.
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Thought setup for the actual laser source that produces ρµlaser.

ρµmodel lower bounds the key rate for the actual protocol using ρµlaser.

Decoy State

Standard Decoy Our Analysis
Central Difference: Diagonal Basis

• All intensities are diagonal in the same
basis

• ρν =
∑∞

n=0 p(n|ν)|n〉〈n|
• The key rate contribution comes from
the single photon state |1〉〈1|

• Each intensity is diagonal in a different
basis

• ρν =
∑∞

n=0 pν(nν)|nν〉〈nν|
• The key rate contribution comes from
the state |1µ〉〈1µ| for signal intensity µ

Preliminary Step: Diagonalise

• We already know the eigenval-
ues/eigenvectors of the signal state
ρµ =

∑∞
n=0 p(n|µ)|n〉〈n|

• ΠNρ
µΠN =

∑N
n′µ=0 pµ(n′µ)|n′µ〉〈n′µ| is

easily diagonalisable and we can
bound the deviation in eigenval-
ues/eigenvectors from the infinite state

Decoy State Goal: Infinite Optimisation
Linear Program Semidefinite Program
min /max p(det |1) such that min /max Tr

[
ΓΦ(|1′µ〉〈1′µ|)

]
p(det |ν) =

∑∞
n=0 p(det |n)p(n|ν) ∀ ν such that Tr [ΓΦ(ρν)] = p(det |ν) ∀ ν

given p(det |ν)

Finite Loosening of Constraints
p(det |ν) ≥

∑N
n=0 p(det |n)p(n|ν) Tr [ΠM Γ ΠM Φ(ΠNρ

νΠN)] ≥ p(det |ν)−εL
p(det |ν) ≤

∑N
n=0 p(det |n)p(n|ν) Tr [ΠM Γ ΠM Φ(ΠNρ

νΠN)] ≤ p(det |ν)+εU

+
∑∞

n=N+1 p(n|ν)
Our analysis is more general than the standard decoy state analysis as it can work
for any arbitrary set of states.
We can now use these statistics with our numerical toolbox to find the key rate.

Numerical Key Rates

Computing the key rate can be reduced to solving an optimisation problem [3, 4]

min f (ρAB)

such that Tr(ΓiρAB) = γi ∀i
where Γi are the different measurements that Alice and Bob perform on their joint
system ρAB and γi are the statistics they observe for the respective measurements.

3-State Protocol

• The three-state protocol is simpler to implement than BB84 since it sends one
less signal state and has fewer active elements.

• Recently, an optical implementation of the protocol was able to achieve key rates

over 421 km of optical fiber [5]. This optical implementation uses high clock

rates and the states were shown not to be fully phase-randomised. Assuming the

laser state to be of the form shown in the simplified model, the experiment used

an asymmetric Mach-Zehnder interferometer to check the coherences between

consecutive laser pulses. The partial coherences were estimated to be (1−q) =

0.0019 [6].

Schematics of the experimental setup from [5].

Results

We found that upto 200 km partial coherences of the magnitude observed in the
experiment [6] did not significantly affect key rates. This is in contrast to past results
[2] that consider more general defects and thus predict key rates only under 40 km
for defects of this magnitude.

Future Work

• Develop a good way to calculate q for an arbitrary phase distribution from experi-
mental observations.

• Develop methods to deal with intensity correlations.

• Improve the numerical toolbox to get key rates past 200 km though practical ap-
plications would use distances upto 200 km that have been shown here.
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