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INTRODUCTION
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Security proof methods for quantum key distribution (QKD) based on numerical key
rate calculation [2] can be powerful in principle. However, the practicality of the
methods are limited by computational resources and the efficiency and accuracy of
the underlying algorithms for convex optimization.
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Asymptotic key rate:

BACKGROUND: Numerical Security Proof Method

where 𝜹𝐄𝐂 is the cost of error correction per signal and 𝐷(0 || 0) is the quantum relative entropy function.

Devetak-Winter formula [3]
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Key rate optimization:

• Previous formulation is ill-posed and numerically challenging: optimal solution is 
usually on boundary of SDP cone.

• We aim at a reliable, efficient numerical method for calculating key rates for QKD 
protocols.

• Regularize the problem using facial reduction on both constraints and nonlinear objective
• Apply Gauss-Newton interior point approach on regularized problem
• Avoid the perturbation approach used in previous works to get 𝝆𝑨𝑩 > 𝟎
• Provide theoretically proven lower bounds 

BACKGROUND: Facial Reduction

Comparison of key rate for discrete-modulated continuous-variable QKD among our Gauss-Newton method [1],
the Frank-Wolfe method [2] and analytical key rate [7] for the noise = 0 case.

• ebBB84(𝑝!,𝑒): entanglement-based qubit BB84 protocol with the probability 𝑝! to choose Z basis and error rate 𝑒.
• pmBB84(𝑝!,𝑒): prepare & measure qubit BB84 protocol with the probability 𝑝! to choose Z basis and error rate 𝑒.
• mdiBB84 (𝑝!,𝑝): qubit-based MDI BB84 protocol with the probability 𝑝! to choose Z basis; simulation is done a 

qubit depolarizing channel with depolarizing probability 𝑝.
• TFQKD(q, L, 𝑝"): Protocol 1 of Ref. [6]. The parameter q is the probability that a source emits single photons. L the 

distance between Alice and Bob. The parameter q is the probability to choose x basis. 
• DMCV(𝑁#,𝐿, 𝜉,𝛼): Discrete-modulated CVQKD [7] with a photon-number cutoff 𝑁#, transmission distance 𝐿, 

channel excess noise 𝜉 and coherent-state amplitude 𝛼.
• dprBB84(c, 𝛼, 𝐿): discrete-phase-randomized weak-coherent-pulse BB84 [8] with c discrete global phases, 

coherent-state amplitude 𝛼 and  transmission distance 𝐿.

Size refers to the dimensions of 𝝆𝑨𝑩 and 𝓖 𝝆𝑨𝑩 .
Gauss-Newton is our algorithm applied to the facial reduced problem. Frank-Wolfe is the algorithm in Ref. [2] either
with our facial reduction formulation or without. The header cvxquad with FR refers to the algorithm provided by [9]
with facial reduction formulation. ** indicates that a certain algorithm fails to give a reasonable answer within a
reasonable amount of time. See our paper [1] for more details.

BACKGROUND: Interior-Point Method

ALGORITHM FEATURES
• Based on a standard primal-dual interior-point approach applied to the facial

reduced problem

• Modify the primal feasibility to use a nullspace representation

• Use a projected Gauss-Newton search direction to account for overdetermined
least squares problem arising from the optimality conditions

• Exploit the exact feasibility of linear constraints after a step length one for the
Gauss-Newton method

• Use a modified form of the dual to obtain a lower bound along with an upper
bound from the objective function to stop the algorithm when the duality gap is
provably small

𝝆𝑨𝑩 ≥ 𝟎, 𝐓𝐫[𝝆𝑨𝑩]= 𝟏

OUR CONTRIBUTIONS

observational constraints &
reduced density operator constraints 

𝝆𝑨𝑩 is a density operator

𝓖 𝝈 = ∑𝒊𝑲𝒊𝝈𝑲𝒊
4: completely positive map that models postprocessing 

steps of a QKD protocol
𝓩 𝝈 = ∑𝒋𝒁𝒋𝝈𝒁𝒋: a quantum pinching channel that is related to key map of 
the protocol. Each 𝒁𝒋 is a projector.

We utilize the accumulated experience within the field of numerical convex
optimization to reformulate the problems in order to obtain faster converging, stable
approaches for solving the given convex optimization problem numerically. Our work
is reported in Ref. [1]. Specifically, we

Gauss-Newton performs significantly better in terms of accuracy of the 
results and running time in most cases.

Figure taken from [5]

• The algorithm can still be improved. For example, one may combine the Hessian
calculation from [10] with our method.

• We would like to extend our algorithm to perform the finite key analysis [11].

Facial reduction is a general technique to preprocess an optimization problem.  
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Facial reduction finds a subspace ℋ
containing our feasible set S that 
intersects the (semidefinite) cone 𝒦

We use facial reduction to remove redundant constraints and redundant unknown 
variables that always take a fixed value (in particular zero) in the entire feasible set. 

Figure reproduced from [4]

Our paper [1] is available on arXiv: 2104.03847. Code is available at https://www.math.uwaterloo.ca/~hwolkowi/henry/reports/ZGNQKDmainsolverUSEDforPUBLCNJuly31/. 


