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Time-Entanglement Based QKD

Time-entanglement is a promising way to address the photon-starved conditions that limit key

rate in polarization-entanglement [2]. With arbitrary precision, we could extract arbitrarily many

bits from a single photon arrival time. In practice, precision is limited, so to extract bits from timing

information, what we do is divide time into discrete bins, which are then grouped into frames.

Frames can be thought of as encoded binary words, where each bin corresponds to a 1 when

occupied by at least one photon and 0 otherwise.

In the figure above, a blue dot indicates an occupied bin, so the first frame will be interpreted as

10000000, the second frame is 00110000, and so on. We can then decode each frame individually

(i.e. with binning schemes such as PPM or with compression algorithms) and concatenate the

results to produce the final key bits.

Calculating Information Rate

We will focus on two variables which affect how key generation rate is calculated.

The Rate at Which Entangled Photon Pairs are Generated

We model the duration between consecutive entangled photon pair production times as ex-

ponential with the rate λp. From λp, we can find the probability that a bin is occupied, p =
1 − exp(−τλp), where τ is the bin width in time. Therefore, the maximum number of bits per bin

is Rp = h(p), where h(p) = −p log2 p − (1 − p) log2(1 − p) is the binary entropy function.

Detector Resolution / Bin Width

Increasing detector resolution means more bits available for us to decode per unit time, which

compensates for the resulting decrease in p. The entropy extracted per time is

Rt = Rp/τ = h(p)/τ = h(1 − exp(−τλp))/τ bits/time

For example, if we halve the bin width and use τ ′ = τ/2 instead of τ , we will extract a maximum of

R′
t = h(1−exp(−τ ′λp))/τ ′ = 2h(1−exp(−τλp/2))/τ bits per time, which is strictly greater than Rt

except at p = 0. In theory, if we can arbitrarily decrease bin width, we can also arbitrarily increase

Rt. Note that while improvements in λp also benefit key rates from polarization entanglement,

improvements in detector resolution mostly only benefit key rates from time entanglement.

Does Time-Entanglement Live up to its Promise?

The two variables – entangled pair production rate λp and bin width τ – as we have described

them so far, would, in theory, allow designers to arbitrarily increase the key rate. In practice,

decreasing τ too farmay overwhelm the system by jitter errors, and increasing p too far, reduces
the system efficacy because of the detector recovery-time. Additionally, notice that by p = 0.5,
we are back to extracting at most one bit per photon arrival. This is predicted by the formula

for maximum photon utilization,

h(1 − exp(−τλp))/(τλp) bits/photon arrival,

which implies that in ideal conditions, polarization entanglement does better when τλp >
h(1 − exp(−τλp)) since τλp is the expected number of bits extracted per bin when polariza-

tion entanglement is used. With the addition of the effects mentioned above, this flipping

point may shift. The advantages of time-entanglement are further reduced by sub-optimal bit

extraction methods and non-ideal detectors.

Detector Recovery-Time

Detector recovery-time is a time interval following a photon detection during which the detector

is unresponsive to any subsequent photon arrivals.

This recovery-time is not restricted by time resolution and may be much greater than the finest

distinguishable time unit. This means that photon arrivals can no longer be modeled as i.i.d.;

rather than as an exponential distribution, photon interarrival times are bettermodeled as a shifted

exponential distribution, where the shift corresponds with the recovery time. This introduction

of memory leads to reductions in Rp and Rt.

Markov Chain Representation

Because of memory between the frames, we model the system by a Markov Chain (MC). The raw

key rate is equal to the entropy rate of the MC:
∑

ij µiPij log2 Pij bits, where µ is the stationary

probability vector and P is the transition matrix.

An Upper Bound on the Key Rate

When we only take into account the detector downtime but not the detector structure, the en-

tropy rate of the corresponding MC represents an upper bound to the key rate. The chain and

the bound are shown below.
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Here, d is the recovery-time in bins (so if k = 1ps, and recovery-time is 2ps, then d = 2).

In the case of Non-Optimal Schemes

For typical n’s (1024, 4096) [2], calculating Rp using an MC state for each of the 2n frames is

impractical. To address this problem, we have developed a way to combine states so that the

total number of states increases polynomially with n, with negligible loss of accuracy in Rp and

Rt. The idea is to combine ”similar” states i and j, where states i and j are similar if the distance

betweenPi andPj and betweenPT
i andPT

j is small. An exampleMC generated using ourmethod

and the corresponding rates’ plot are shown below:

Each state contains an identifier (di,n1,do), where di and do are recovery-time into and out of the

frame, respectively, and n1 is the number of occupied bins inside the frame, minus one if do > 0.
The expression under each identifier is the transition probability of all transitions into that state.

Jitter Error and Associated Rate Cost

Observed jitter error refers to the difference in detection times between the two stations. Two

factors contribute to observed jitter errors: detector imprecision and uncorrelated coincident dark

counts. In PPM Alice and Bob consider frames where they both have only one occupied bin. In

some cases they both declare a frame valid despite only seeing dark counts. Observed jitter errors

are shown below using only PPM-valid frames which were extracted from experimental data. We

thank Murat Sarihan for providing the raw arrival data [1].

A: Observed jitter errors in coincident

single detection frames. B: Naive

Gaussian fit with σ = 784. C: Custom
fitted pdf with σ = 73.29 and c = 27%

of the jitters from dark counts.

x-axis indicates difference in

Alice and Bobs detection

time in ps when frame size of

4096 ps is used. y-axis indi-

cates probability density.

C: p(tj) = (1 − c)N(0, σ2) + cTri(f )
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Jitter errors caused by the detector imperfections follow a Gaussian distribution. These

errors are different from errors introduced through dark counts, which produce a trian-

gular distribution (the convolution of two uniform distributions over the frame width).

Around 62% of jitters are expected to be less than 100 ps in magnitude for this frame

configuration. The plot below shows the direct relation between detector jitter vari-

ance and key rate loss (generated using the error channel characterization above).

Secret key rate in bits per frame when frame size is 4096 ps and we use 16 bins per frame
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