
Tight Bounds for Inverting Permutations
via Compressed Oracle Arguments

Ansis Rosmanis
Graduate School of Mathematics, Nagoya University, Japan

oracle
algorithm
(adversary)

Summary
Consider the following random oracle problems.

• UNSTRUCTURED SEARCH: Given a random function f : {0, 1}m→
{0, 1}n, find some x such that f (x) = 0n.

• INVERTING PERMUTATION: Given a random permutation f : {0, 1}n
→ {0, 1}n, find the unique x such that f (x) = 0n.

In [Crypto 2019] Zhandry introduced the compressed oracle technique
and, among other things, showed how to use it to reprove that the
success probability for any κ-query algorithm for UNSTRUCTURED

SEARCH is in O(κ2/2n). We show how an approach similar to the
compressed oracle technique can be used to reprove the same bound
for INVERTING PERMUTATION.

Oracle-Algorithm Interaction
If we consider any given function f , the algorithm has access to the
oracle call Of : |x, y〉 7→ |x, y ⊕ f (x)〉 and the projector on successful
outcomes is Pf :=

∑
x : f (x)=0n |x〉〈x|.

If the oracle holds a superposition over functions f , the algorithm in-
teracts with the oracle via O :=

∑
f |f〉〈f | ⊗ Of and the projector on

successful function-outcome pairs is P :=
∑

f |f〉〈f | ⊗ Pf .

The Basic Idea Behind the Bound

The state of the oracle has to undergo certain evolution in order for
the algorithm to succeed, yet each oracle call cannot evolve the oracle
state by much. (The quantum adversary method uses the same idea.)

Modifying Zhandry’s Approach
To obtain our bound for INVERTING PERMUTATION, we first intro-
duce a couple of modifications to Zhandry’s analysis for UNSTRUC-
TURED SEARCH, and then we rewrite the modified analysis to be more
suitable for permutations.

Modification 1 : Zhandry used a time-efficient operation Õ that, from
algorithm’s point of view, is perfectly indistinguishable from calling
O on a uniform superposition of f . We simply use the latter.

Independent Registers for Function Values

The oracle register F containing the function can be decomposed into
2m registers F0, F1, F2, . . . , F2m−1, each of dimension 2n and containing
one specific value of the function, and we can write

|f〉F = |f (0b)〉F0
|f (1b)〉F1

|f (2b)〉F2
· · · |f ((2m − 1)b)〉F2m−1

.

Here yb is y written in binary.

Observation 1 : Since initially the oracle contains a uniform superpo-
sition over all 2n2m functions f : {0, 1}m → {0, 1}n, its initial state is
|∅̂〉F0
|∅̂〉F1
|∅̂〉F2
· · · |∅̂〉F2m−1

where |∅̂〉 :=
∑

y |y〉
/√

2n.

We interpret the state of the oracle register F as a “database” of the
answers the oracle has so far given to the algorithm. We interpret the
state of the single value register Fx as

• |∅̂〉: the algorithm has not queried f (x) and no input-output pair
(x, y) is in the database.

•
∑

y βy|y〉 orthogonal to |∅̂〉: the algorithm has queried f (x) and
(x, y) is in the database with probability |βy|2; in particular, we in-
terpret

– |r0〉 :=
(
|0n〉 − 1

2n−1

∑
y 6=0n |y〉

)√
2n−1

2n : the algorithm has learnt that
f (x) = 0n;

– |other〉: the algorithm has learnt f (x) 6= 0n.

Modification 2 : Zhandry essentially used a dedicated extra (2n+1)-th
dimension for every Fx to indicate (x, ·) not being in the database.

Observation 2 : After k oracle calls, no more than k input-output pairs
are in the database.

Observation 3 : The probability of the algorithm finding a valid so-
lution is at most the probability of the database containing the pair
(x, 0n) for some x plus the minuscule term of O(1/2n).

Low and High Success Oracle Subspaces
For every register Fx, we interpret its state being in the spaceHoth that
is spanned by all the states orthogonal to |r0〉 (including |∅̂〉) as the
algorithm having not learnt that f (x) = 0n.

For the algorithm to succeed, it suffices that for even one x the content
of Fx is not inHoth. Thus we define

• low success subspaceHlow: Hlow = Hoth ⊗Hoth ⊗ . . .⊗Hoth;
• high success subspaceHhigh: the orthogonal complement ofHlow.

Lower Bound for UNSRUCTURED SEARCH

Let |ψk〉 be the state of the overall system after k queries.

Let αk = ‖(Πhigh ⊗ IA)|ψk〉‖, where Πhigh is the projector onHhigh.

We get

• from the initial state: α0 = 0;
• from the oracle call: αk ≤ αk−1 + O

(
1/
√

2n
)
;

• from the final measurement: psucc ≤ ‖ακ‖2 + O(1/2n).

Alternative Definitions ofHlow andHhigh

Define vectors |vy1,y2,...,yk
x1,x2,...,xk

〉 :=
∑

f : ∀i f (xi)=yi
|f〉, and spaces

A0 := span{|v∅〉}, Hlow
0 := A0,

B1 := span{|v0n

x1
〉 : x1}, Hhigh

1 := B1 ∩ A⊥0 ,
A1 := span{|vy1

x1
〉 : x1, y1}, Hlow

1 := A1 ∩ (B1 +A0)
⊥,

B2 := span{|vy1,0
n

x1,x2
〉 : x1, y1, x2}, Hhigh

2 := B2 ∩ A⊥1 ,
A2 := span{|vy1,y2

x1,x2
〉 : x1, y1, x2, y2}, Hlow

2 := A2 ∩ (B2 +A0)
⊥,

... ...

We accumulate the low and the high success subspaces as

Hlow
k :=

⊕k

k′=0
Hlow
k′ and Hhigh

k :=
⊕k

k′=1
Hhigh
k′ ,

and we haveHlow
2m = Hlow andHhigh

2m = Hhigh.

Adaptations for INVERTING PERMUTATION

Define vectors |vy1,y2,...,yk
x1,x2,...,xk

〉 as above, except summing only over per-

mutations, and in turn define all the spaces Ak, Bk, H
low
k , Hhigh

k , Hlow
k ,

Hhigh
k as above. However, it is not useful to consider values of k close

to the maximum, and thus we do not defineHlow andHhigh.

Now define αk = ‖(Πhigh
k ⊗ IA)|ψk〉‖, and we have

•α0 = 0; • ((Πlow
k + Πhigh

k)⊗ IA)|ψk〉 = |ψk〉;
•αk ≤ αk−1 + O

(
1/
√

2n−4k
)
; • psucc ≤ ‖ακ‖2 + O(1/(2n−2k)).

