Quantum Oblivious Transfer from One-way Functions

ALEX GRILO

HUIJIA LIN

FANG SONG

VINOD VAIKUNTANATHAN

JAMES BARTUSEK

ANDREA COLADANGELO

DAKSHITA KHURANA

FERMI MA

Impagliazzo's Five Worlds

- 5 possibilities
 - based on different crypto-computational assumptions.
- The top two worlds:
 - Minicrypt One Way Functions exist, some crypto possible (symmetric encryption, commitments, signatures...)
 - Cryptomania Oblivious Transfer (OT) exists, almost anything imaginable is possible.

Slide courtesy: Moni Naor, 2006. Talk at Weizmann on How to Prove that Minicrypt=Cryptomania (in the future)

One-Way Functions

One-Way Functions

 \forall polynomial-time A, Pr [A(y) $\in f^{-1}(y)$] = negl.

Oblivious Transfer

Oblivious Transfer: Security

"learn no more than what they would if they were interacting with a trusted third party."

Oblivious Transfer: Security against a malicious Receiver B

Oblivious Transfer: Security against a malicious Receiver B

Sim must extract B's implicit input *b* without knowing A's input s_0, s_1

Oblivious Transfer: Security against a malicious Sender A

Oblivious Transfer: Security against a malicious Sender A

Sim must extract A's implicit inputs s_0, s_1 without knowing B's input b

Secure Multi-Party Computation

In a Quantum World

* Not known to imply MPC

In a Quantum World

In a Classical World:

Quantum Mechanics

• BB84 states

Basis θ : \ddagger

Bit *x*: 1

Basis θ : \leftrightarrow Bit *x*: 0

Basis θ : \leftrightarrow Bit *x*: 1

Quantum Mechanics

• BB84 states

Basis θ : Bit x: 0 w.p. ½, 1 w.p. ½ Given random BB84 state (θ, x) , measure in basis θ' :

- If $\theta' = \theta$: observe x
- If $\theta' \neq \theta$: observe random bit

BB84 states + crypto = erasure channel

• Step 1: Establish an erasure channel

$$\underbrace{S(s_0, s_1)}_{\text{Sample bases } \theta = \leftrightarrow \ddagger \ddagger \leftrightarrow \leftrightarrow \\ x = 011011} \xrightarrow{\left\{ \begin{vmatrix} 0 \\ 1 \end{vmatrix} \right\}} \xrightarrow{\left\{ \begin{vmatrix} 0 \\ 1 \end{vmatrix} \right\}}} \xrightarrow{\left\{ \begin{vmatrix} 0 \\ 1 \end{matrix} \right\}}$$

Sample bases $\theta' = \uparrow \leftrightarrow \uparrow \uparrow \downarrow \leftrightarrow$ Obtain bits x' = 001001

• Step 1: Establish an erasure channel

• Step 1: Establish an erasure channel

$$S(S_{0}, S_{1})$$
Sample bases $\theta = \leftrightarrow \uparrow \uparrow \uparrow \leftrightarrow \leftrightarrow$
Sample bits $x = 011011$

$$I_{(1)}^{(0)} I_{(1)}^{(0)} I_{(1)}^{($$

Fix: The Measurement-Check Subprotocol

[DFLSS09]: Simulation security of OT follows from using commitment with certain properties:

• **Extractability** → security against malicious receiver

Security against Malicious R

Sim must extract R's implicit input b

Extractable (Bit) Commitment

Extractable (Bit) Commitment

[DFLSS09]: Simulation security of OT follows from using commitment with certain properties:

• Equivocality → security against malicious sender

Security against Malicious S

Sim must extract S's implicit inputs

Equivocal (Bit) Commitment

Equivocal (Bit) Commitment

Goal: (quantum-secure) Extractable and Equivocal bit commitment from one-way functions

[BCKM21]	[GLSV21]
 Black-box equivocality compiler Extractable commitment from equivocal commitment and quantum communication 	 Equivocal commitment from Naor's commitment and zero-knowledge Unbounded-simulator OT from equivocal commitment Extractable and equivocal commitment from unbounded- simulator OT and quantum communication

Goal:

Extractable and Equivocal bit commitment from one-way functions

Key Obstacle: Extractable (bit) Commitment

Extractable Bit Commitments: Approach 1 [BCKM]

Extractable (Bit) Commitments from Equivocal (Bit) Commitments

Extractable Bit Commitments: Approach 2 [GLSV]

In a Quantum World

^{*} Not known to imply MPC

Extractable (Bit) Commitments from Weak OT

<u>R</u>

Extractable (Bit) Commitments from Weak OT

<u>R</u>

$CDS\,$ from Weak OT

C(m)

CDS (m) (r)y: if c = com(1; r) then (m) else \bot y

<u>R</u>

Garbled circuits + weak OT

Garbled circuits + weak OT + cut-and-choose + error correction

Open Problems

Open Problems

- 1. What does the landscape of cryptographic complexity look like in the presence of quantum communication?
- 2. Can cryptography with quantum communication be based on better complexity-theoretic foundations (e.g., $P \neq NP$)?
- 3. Which two-party functionalities are complete for secure computation with quantum communication?
- 4. Can we minimize the number of quantum resources/qubits consumed per OT while still only relying on one-way functions? Random Oracles?

Slide courtesy: Moni Naor, 2006. Talk at Weizmann on How to Prove that Minicrypt=Cryptomania (in the future)

