Explicit asymptotic secret key rate of continuous-variable quantum key distribution with an arbitrary modulation

Aurélie Denys¹, Peter Brown², Anthony Leverrier¹

1. Inria Paris, France 2. ENS de Lyon, France

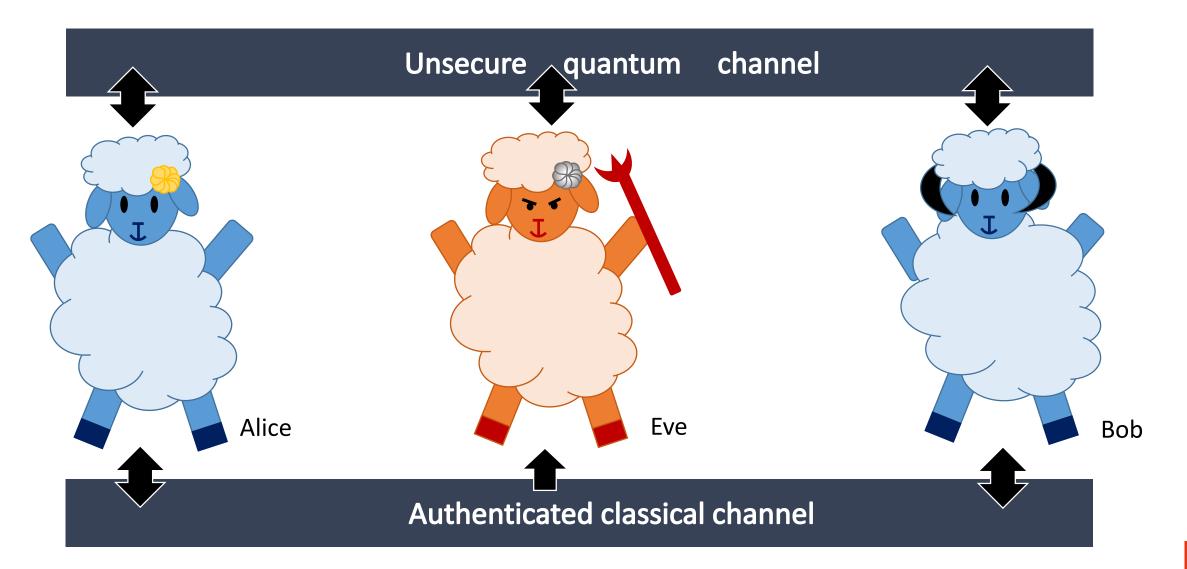
Outline

1. Motivation, main result and methods

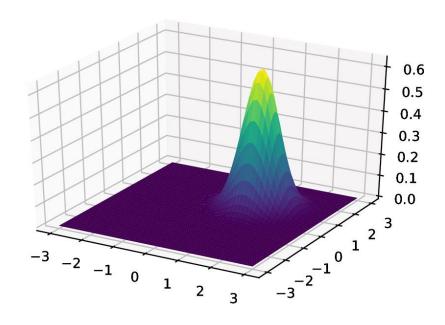
2. Applications and extensions

1st part: Motivation, main result and methods

Quantum key distribution (QKD)



Continuous-variable (CV) QKD

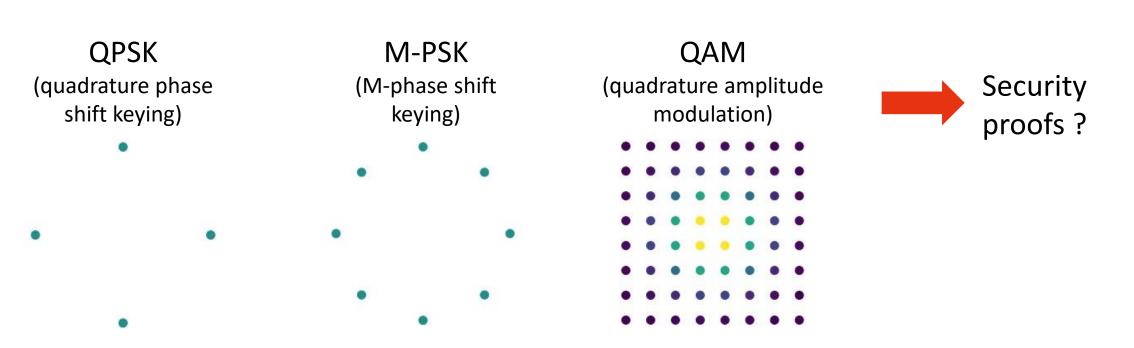


Wigner function of the coherent state $|\alpha\rangle$ with $\alpha = 1 + i$

- Historically, discrete-variable (DV) protocols such as BB84
- DV QKD requires single-photon detectors ->
 expensive
- Continuous variables [Ralph 1999]:
 - encoding on the quadratures of the quantified electromagnetic field + coherent detection
 - → <u>experimentally friendlier</u>
 - But harder proofs (infinite-dimensional Fock space), and less tolerant to loss

Discretely modulated (DM) CVQKD

- Gaussian modulation : Alice sends $|\alpha\rangle$ with $\alpha \sim N(0, V_A)$ [Grosshans, Grangier 2002] (Almost complete) security proof [Garcia-Patron, Cerf 2006; Navascues, Grosshans, Acín 2006, Leverrier 2017]
- ❖ Infinite continuous constellation ≠ modulators have a finite precision and range
 → unrealistic
- ⇒ Discretely modulated CVQKD protocols



(Prepare and measure) Protocol

Quantum part (repeated many

times)

1. Alice randomly chooses one coherent state $|\alpha_k\rangle$ with probability p_k from a set of coherent states $\{|\alpha_k\rangle\}_{k\in I}$ and sends it to Bob.

$$\tau = \sum_{k \in I} p_k \, |\alpha_k\rangle\langle\alpha_k|$$

2. Bob measures the quadratures of the states he receives, using coherent detection, and obtains β_k .

<u>Classical</u> <u>post-</u> processing

- 1. Discretisation of Bob's variables
- 2. Reconciliation step
- 3. Parameter estimation
- 4. Privacy amplification

1. Motivation, main result and methods

Main result: analytical bound on the asymptotic secret key rate of DM CV QKD

- Security proof in the asymptotic regime, under the restriction to coherent attacks
- Asymptotic secret key rate = Important figure of merit to compare various protocols
- Numerical bounds [Ghorai et al PRX 2019; Lin et al PRX19], but : computationally-expensive, time-consuming, difficult to optimise over parameters, less reliable.
- Result : explicit analytical bound on the asymptotic secret key rate of any DM CV QKD protocol

Equivalent entanglement-based protocol and Devetak Winter bound

Devetak-Winter bound :

Mutual information between Alice and Bob

Secret key rate
$$k = I(X;Y) - \sup_{N:A' \to B} \chi(Y;E)$$

(Symmetrised) Covariance matrix:

Fixed by modulation
$$V = (V_A + 1)$$

$$\Gamma = \begin{bmatrix} V & I_2 & Z & \widehat{\sigma}_z \\ Z & \widehat{\sigma}_z & W & I_2 \end{bmatrix}$$

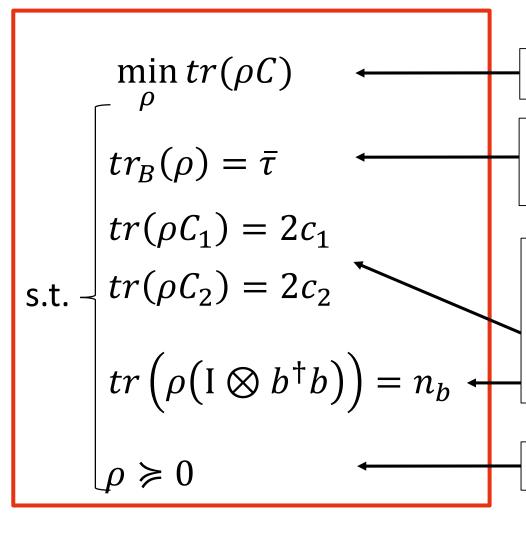
Measured locally by Bob

Extremality of Gaussian states [García Patrón, Cerf 2006, Navascués, Grosshans, Acín2006] \rightarrow upper bound on Holevo information depends on Γ and on the type of coherent detection used :

$$\sup_{N:A'\to B}\chi(Y;E)\leq \mathrm{f}(\Gamma)$$

$$\Rightarrow$$
 Goal : Bound on Z = $tr(\rho(\hat{a}\hat{b} + \hat{a}^{\dagger}\hat{b}^{\dagger}))$

Semidefinite Program



ho : state shared by Alice and Bob ; $C = \hat{a}\hat{b} + \hat{a}^{\dagger}\hat{b}^{\dagger}$

 ρ is obtained by applying a channel to the bipartite state prepared by Alice ; $\tau = \sum_k p_k |\alpha_k\rangle\langle\alpha_k|$.

Constraints obtained from observed statistics in the prepare & measure protocol :

- First moment constraints
- Second moment constraint

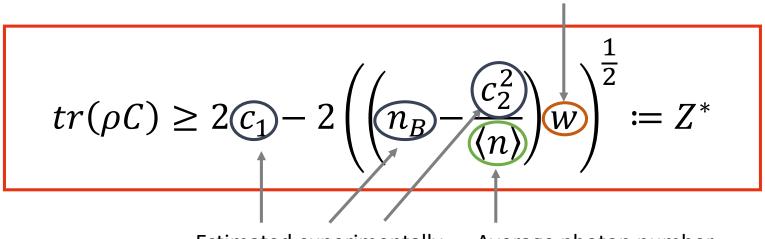
 ρ is a density matrix

Bound on a solution of the SDP

$$K=z\left(A-x\,P^\dagger\right)+\frac{1}{z}B^\dagger$$
 where x, z et P are parameters that we later optimise
$$KK^\dagger=E-C$$

$$KK^\dagger\geqslant 0\Rightarrow tr(\rho C)\leq tr(\rho E)$$

Depends on the modulation



Estimated experimentally

Average photon number in the modulation

Continuity with known results: Gaussian modulation

Recall:
$$tr(\rho C) \le 2 c_1 - 2\left(\left(n_B - \frac{c_2^2}{\langle n \rangle}\right)w\right)^{\frac{1}{2}}$$

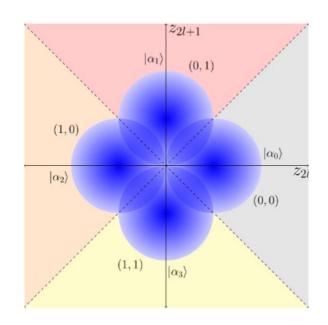
w vanishes for a Gaussian modulation

If the transmittance channel is T, recover

$$tr(\rho C) = 2\sqrt{T(\langle n \rangle^2 + \langle n \rangle)}$$

⇒ tight bound in the case of a Gaussian modulation.

Continuity with known results: Quadrature Phase Shift Keying



Numerical bounds [from Ghorai et al PRX 2019] and our analytical bounds match except for transmittances very close to 1.



2nd part: Applications Study of M-PSK &QAM, other applications, extensions

Methods to get practical results

lacktriangle Typical Gaussian channel with transmittance T and excess noise ξ

$$\Gamma = \begin{bmatrix} (V_A + 1) I_2 & Z^* \hat{\sigma}_Z \\ Z^* \hat{\sigma}_Z & (1 + T V_A + T \xi) I_2 \end{bmatrix}$$

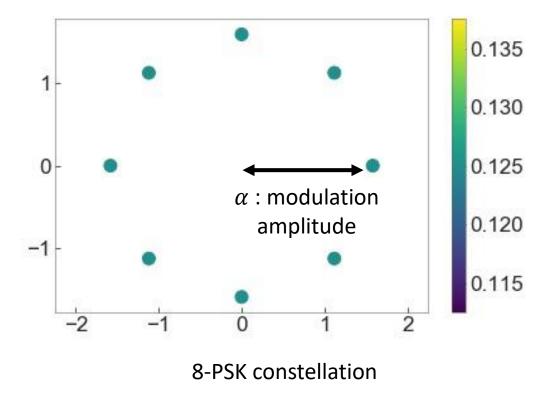
$$Z^* = 2\sqrt{T} tr(\tau^{1/2} a \tau^{1/2} a^{\dagger}) - \sqrt{2T \xi w}$$

- Reconciliation efficiency
- Heterodyne detection

$$k = \beta I(X;Y) - \sup_{N:A' \to B} \chi(Y;E) \le \beta I(X;Y) - f(\Gamma)$$

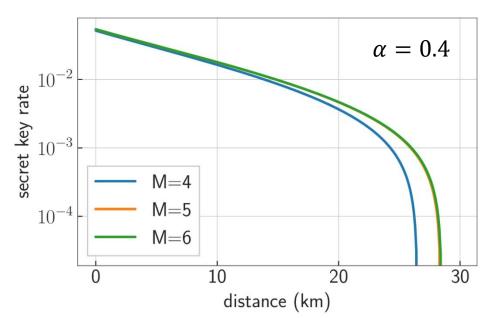
Phase-shift keying modulations (PSK)

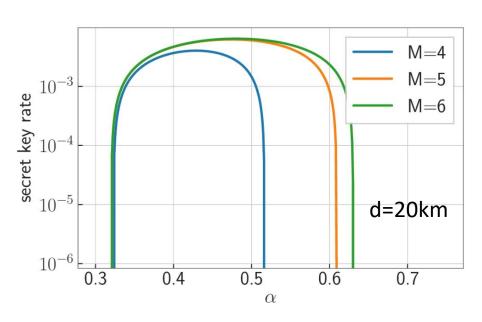
Constellation made of coherent states regularly arranged on a circle in phase space, drawn with equal probability.



Phase-shift keying modulations

- ❖ When the modulation amplitude is optimised, going beyond M=5 is essentially useless.
- * But increasing M allows for larger possible values of the modulation amplitude.
- ⇒ The method of [Lin, Upadhyaya, Lütkenhaus 2019; Upadhyaya et al 2021] seems to give better bounds for M-PSK modulations.



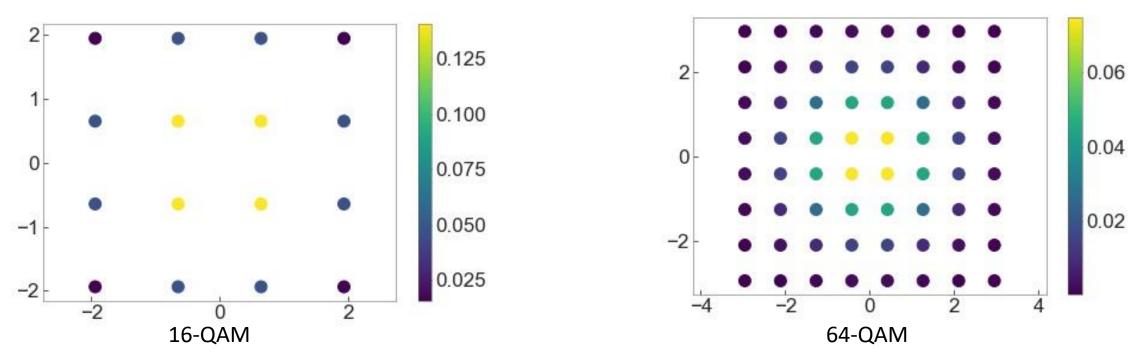


Asymptotic secret key rate for the M-PSK modulation schemes. ξ = 0.01; β =0.95.

Quadrature-amplitude modulations (QAM)

Constellation: coherent states regularly arranged on a grid in phase space, drawn according to a certain distribution (e.g. binomial or discretised Gaussian distribution).

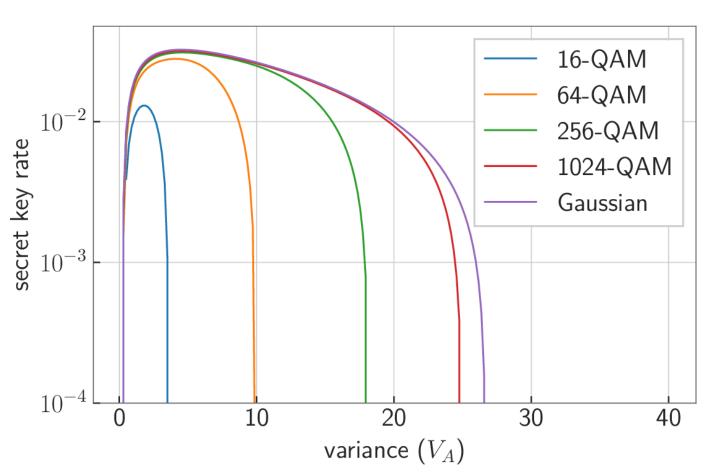
→ what people want to do in practise to use standard telecom equipment



Colors indicate the probabilities corresponding to each state.

Quadrature amplitude modulations

- 64-QAM already gives performances close to that of the Gaussian.
- Increasing the constellation size enables to work at higher signal-to-noise ratio.



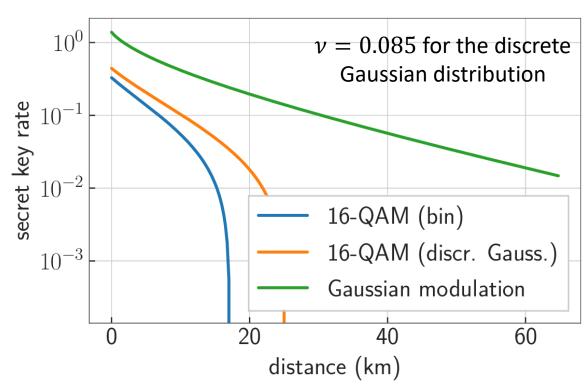
Secret key rate at 50 km as a function of the modulation variance VA, for various modulation schemes.

Parameters : $\xi = 0.02$, $\beta = 0.95$.

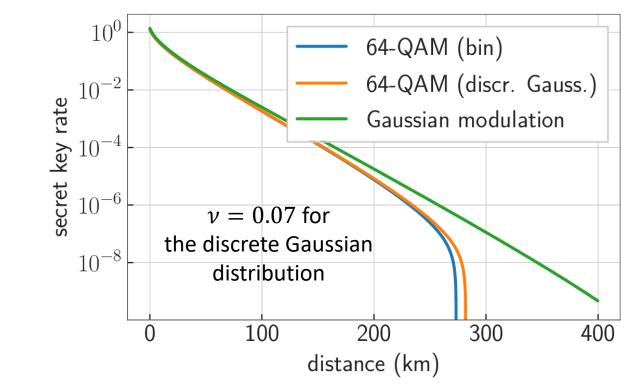
For this choice of distance and excess noise, our bound gives a vanishing secret key rate for the QPSK scheme.

Comparison of QAM constellations

For the 16-QAM, the discrete Gaussian (with optimal parameter) outperforms the binomial distribution.



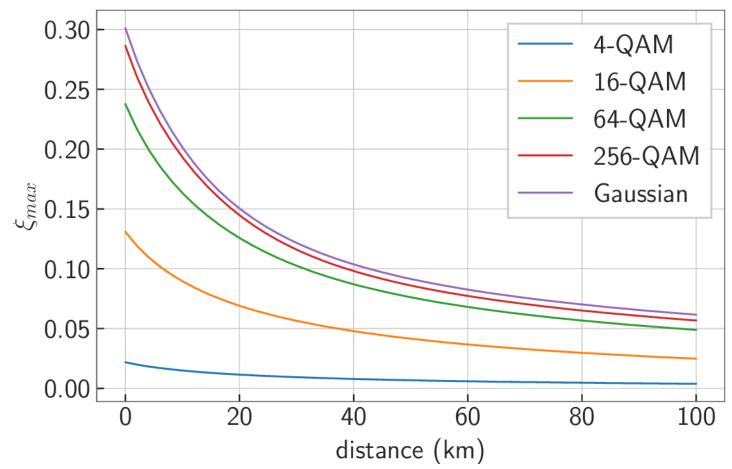
For a 64-QAM both distributions yield essentially the same performance.



Bound on the asymptotic secret key rate as a function of the distance. Fixed parameters parameters : $V_A = 5$, $\xi = 0.02$, $\beta = 0.95$

Maximum tolerable excess noise

- Maximum value of the excess noise ξ which gives a positive secret key rate?
 - 64-QAM : performance close to the Gaussian modulation
 - 256-QAM : almost indistinguishable from the Gaussian modulation.



Maximum value ξ_{max} of excess noise compatible with a positive key rate as a function of distance, for various QAM sizes (with binomial distribution). $\beta = 0.95$, V_A is optimized for each point.

Arbitrary modulations

- Similar method (with a different K operator)
- Applications :
 - protocols with e.g. thermal states
 - assess impact of imperfect state preparation on the security
- ❖ Bound has one more term → tightness : open question

Conclusion

<u>Main result</u>: Analytical bound on the asymptotic secret key rate of CV QKD protocols with an arbitrary modulation of coherent states (and more generally any arbitrary modulation)

Most impactful applications:

- Choice of modulation sizes (e.g. 64 states)
 - Step towards full security proof

Other benefits:

Makes possible the

- Study of optimal constellations
- Study of the impact of imperfect state preparation on the security

Open questions:

- Tightness of bounds
- Extensions to other schemes
- Optimality of collective attacks among general attacks

Thank you!

