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Barrier to global networking

Max secret bits distributed over lossy channel: < − log2(1− η) ∼ 1.44η.

Can overcome limitation through:

• quantum repeaters

• multi-hop quantum networks

repeater links with transmissivities ηi

− log2(1−miniηi )

However, quantum repeaters have limitations

• not experimentally feasible

• some regions inaccessible - free space links required

1
Front. Phys. 13(5), 130314 (2018).
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Satellite quantum communications

Why satellites?

1. Overcome direct transmission

limits

• reduce demand on quantum

repeaters

• less noise than ground links

2. Extend quantum networks

• uplink/downlink

• inter-satellite links

• efficient entanglement routing

2
Satellite-to-ground QKD, Nature 549 43 (2017).

3
Network over 4,600 km, Nature 589 214 (2021).
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SatQKD operation (I)

System link efficiency ηsys
link characterises performance of SatQKD: satellite-OGS

link efficiency at zenith.

4
Entanglement-based secure quantum cryptography over 1,120 kilometres, Nature 582, 501 (2020).
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SatQKD operation (I)

System link efficiency ηsys
link characterises performance of SatQKD: satellite-OGS

link efficiency at zenith.

Source losses: QBERI

- non-ideal signals
- satellite-OGS misalignment
- imperfect measurements

Independent of count rates & channel loss

4
Entanglement-based secure quantum cryptography over 1,120 kilometres, Nature 582, 501 (2020).



SatQKD operation (I)

System link efficiency ηsys
link characterises performance of SatQKD: satellite-OGS

link efficiency at zenith.

Extraneous count: pec
- dark count rate
- background light

Elevation independent
Source losses: QBERI

- non-ideal signals
- satellite-OGS misalignment
- imperfect measurements

Independent of count rates & channel loss

4
Entanglement-based secure quantum cryptography over 1,120 kilometres, Nature 582, 501 (2020).



SatQKD operation (II)

General satellite overpass geometry for circular orbit of altitude h:

Single block: SKLfinite = SKL ({nµk ,m
µ
k }) ,

where {nµk ,m
µ
k } = agglomerated counts without partitioning into sub-segments.



Finite key two-decoy state BB84

Three intensities µj with probabilities pj , such that µ1 > µ2 > µ3 = 0:

Finite block secret key length (skl)

` = sX,0 + sX,1(1− h(φX))− λEC − 6 log2

21

εs
− log2

2

εc

4
Concise security bounds for practical decoy-state quantum key distribution, Phys. Rev. A 89, 022307 (2014).

5
Tight security bounds for decoy-state quantum key distribution, Sci. Rep. 10, 14312 (2020).

6
Fundamental finite key limits for one-way information reconciliation in quantum key distribution, Quant. Inf. Proc.,16280 (2017).
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− log2
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Finite SKL determined from finite sample data block sizes

n±X(Z),k =
ek

pk

[
nX(Z),k ± δ±nX(Z),k

]
,

Correction terms: δ+
Y = β +

√
2βy + β2, δ−Y =

β

2
+

√
2βy +

β2

4

derived from inverse multiplicative Chernoff bounds with β = ln(1/ε).
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Lower bound is tight when µ3 → 0.
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Maximise SKL over parameter space:

https://github.com/cnqo-qcomms/SatQuMA.



Optimised finite key length

Maximise SKL over parameter space:

Optimised finite key length, `

maximize
pX, µ1, µ2, p1, p2,∆t

sX,0 + sX,1(1− h(φX))− λEC − 6 log2

21

εs
− log2

2

εc

subject to 0 < {pX, pj} < 1,

0 < {µ1, µ2} < 1,

µ1 > µ2 > µ3,

0 < ∆t ≤ t(10◦)
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Optimised finite key length

Maximise SKL over parameter space:

Satellite Quantum Modelling & Analysis Software

• toolkit to model satellite QKD

• available to download on GitHub

https://github.com/cnqo-qcomms/SatQuMA.
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Relative system performance

Variation in SKL with pec and QBERI :
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Relative system performance

Variation in SKL with pec and QBERI :
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Improve background light suppression and detector dark counts over source

fidelities and satellite alignment.
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where Nyear
orbits is the number of orbits per year, and Llat is the longitudinal

circumference along the line of latitude at the OGS location.
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Multiple satellite passes

Data from several overpasses can be combined to improve SKL generation
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Systems with zero single-overpass SKL can generate key from M overpasses:

• `M ≥ M`1 with diminishing improvement `M+1 − `M with increasing M

• smaller estimation uncertainties from increased sample size

• greater latency leads to potential security vulnerabilities.
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Protocol performance

Efficient BB84 performs better than standard BB84 in asymptotic regime.
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Asymmetric BB84 delivers more finite key than symmetric BB84

• Improvement of 3 dB gives 7.6 times more annual key volume

• better sifting ratio and longer raw key length

• better handling of parameter estimation.
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In summary ...

1. Numerical toolkit to benchmark system performance for SatQKD

2. SatQKD systems should prioritise background light suppression over higher

intrinsic quantum signal visibilities or extending transmission

3. Efficient BB84 provides larger operation footprint than conventional BB84

4. secret key extraction efficiency enhanced by combining data blocks from

several passes.

Future work:

1. More comprehensive constraints to reflect additional restrictions on system

operations and deployment

2. Incorporate orbital modelling of constellations with cost/performance

trade-off studies.

J. Sidhu, T. Brougham, D. McArthur, R. Pousa, D. Oi, arXiv:2012.07829.
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Thank you for your attention!


