The asymptotic performance of coherent-one-way quantum key distribution

Róbert Trényi and Marcos Curty

Escuela de Ingeniería de Telecomunicación, Department of Signal Theory and Communications, University of Vigo, Vigo E36310, Spain

J. González-Payo, R. Trényi, W. Wang, and M. Curty, Phys. Rev. Lett. 125, 260510 (2020) R. Trényi and M. Curty, arXiv:2101.07192 (2021)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 675662

Practical issue: perfect single-photon sources are challenging to realize

Practical issue: perfect single-photon sources are challenging to realize

Phase-randomized weak coherent pulses (WCP) are used

$$ho = \sum_{n=0}^{\infty} rac{e^{-\mu} \mu^n}{n!} \left| n
ight
angle \! \langle n
ight| \,$$
 with intensity μ

Practical issue: perfect single-photon sources are challenging to realize

Phase-randomized weak coherent pulses (WCP) are used

$$ho = \sum_{n=0}^{\infty} rac{e^{-\mu} \mu^n}{n!} \left|n
ight
angle\! \langle n
ight| \,$$
 with intensity μ

Photon number splitting (PNS) attack seriously limits performance due to multi-photon components

Practical issue: perfect single-photon sources are challenging to realize

Phase-randomized weak coherent pulses (WCP) are used

$$\rho = \sum_{n=0}^{\infty} \frac{e^{-\mu} \mu^n}{n!} \, |n \rangle \! \langle n| \; \text{ with intensity } \mu$$

Photon number splitting (PNS) attack seriously limits performance due to multi-photon components

Example: BB84 with WCPs

Secret key rate scaling $\mathcal{O}(\eta^2)$

H. Inamori et al, The European Physical Journal D 41, 3 (2007)

Possible solutions against the PNS attack:

- Decoy-state QKD^{W.-Y.} Hwang, Phys. Rev. Lett. 91, 057901 (2003); H.-K. Lo, X. Ma, and K. Chen, Phys. Rev. Lett. 94, 230504 (2005); X.-B. Wang, Phys. Rev. Lett. 94, 230503 (2005)
 - Different intensity settings for the WCPs
 - Achievable $\mathcal{O}(\eta)$ scaling

Possible solutions against the PNS attack:

- Decoy-state QKD^{W.-Y.} Hwang, Phys. Rev. Lett. 91, 057901 (2003); H.-K. Lo, X. Ma, and K. Chen, Phys. Rev. Lett. 94, 230504 (2005); X.-B. Wang, Phys. Rev. Lett. 94, 230503 (2005)
 - Different intensity settings for the WCPs
 - Achievable $\mathcal{O}(\eta)$ scaling
- Strong reference pulse technique ^{M. Koashi, Phys. Rev. Lett. 93, 120501 (2004)} K. Tamaki, N. Lütkenhaus, M. Koashi, and J. Batuwantudawe, Phys. Rev. A 80, 032302 (2009)
 - Achievable $\mathcal{O}(\eta)\,\mathrm{scaling}$

Possible solutions against the PNS attack:

- Decoy-state QKD^{W.-Y.} Hwang, Phys. Rev. Lett. 91, 057901 (2003); H.-K. Lo, X. Ma, and K. Chen, Phys. Rev. Lett. 94, 230504 (2005); X.-B. Wang, Phys. Rev. Lett. 94, 230503 (2005)
 - Different intensity settings for the WCPs
 - Achievable $\mathcal{O}(\eta)$ scaling
- Strong reference pulse technique ^{M. Koashi, Phys. Rev. Lett. 93, 120501 (2004)} K. Tamaki, N. Lütkenhaus, M. Koashi, and J. Batuwantudawe, Phys. Rev. A 80, 032302 (2009)
 - Achievable $\mathcal{O}(\eta)$ scaling
- Distributed-phase-reference (DPR) QKD
 - Differential-phase-shift (DPS) K. Inoue et al, Phys. Rev. Lett. 89, 037902 (2002)
 - Coherent-one-way (COW) N. Gisin et al, arXiv quant-ph/0411022 (2004)

DPR QKD:

- DPS QKD
 - Information is encoded into the phase difference between coherent pulses
 - Achievable $\mathcal{O}(\eta^{3/2})$ scaling
 - Round-robin DPS QKD $\Longrightarrow \mathcal{O}(\eta)$ can almost be reached

T. Sasaki, Y. Yamamoto, and M. Koashi, Nature 509, 475 (2014);

DPR QKD:

- DPS QKD
 - Information is encoded into the phase difference between coherent pulses
 - Achievable $\mathcal{O}(\eta^{3/2})$ scaling
 - Round-robin DPS QKD $\Longrightarrow \mathcal{O}(\eta)$ can almost be reached

T. Sasaki, Y. Yamamoto, and M. Koashi, Nature 509, 475 (2014);

• COW QKD

- Encoding is done by combining coherent and/or vacuum pulses
- Security was not fully established prior to our work

upper bound against general attacks $\, \mathcal{O}(\eta) \,$

- lower bound against general attacks $O(\eta^2)$ lower bound against *collective* attacks $O(\eta)$
- Is already commercialized and long-distance experiments have been performed

D. Stucki et al, New J. of Phys. 11, 075 003 (2009); B. Korzh et al Nat. Ph. 9, 163-168 (2015)

- Quantum bit error rate (QBER)
- Visibilities $V_s = rac{p(\mathrm{DM1}|s) p(\mathrm{DM2}|s)}{p(\mathrm{DM1}|s) + p(\mathrm{DM2}|s)}$ with $s \in \mathcal{S} \equiv \{d, 01, 0d, 1d, dd\}$
- For a certain value of the Gain (probability that Bob observes a detection event per signal)

- Quantum bit error rate (QBER)
- Visibilities $V_s = rac{p(\mathrm{DM1}|s) p(\mathrm{DM2}|s)}{p(\mathrm{DM1}|s) + p(\mathrm{DM2}|s)}$ with $s \in \mathcal{S} \equiv \{d, 01, 0d, 1d, dd\}$
- For a certain value of the Gain (probability that Bob observes a detection event per signal) Its secret key rate scales with at most $O(\eta^2)$

Weak points of the COW

• Linearly independent signal states

Eve can avoid misidentifying signal states

Weak points of the COW

Eve can avoid misidentifying signal states

• Vacuum pulses in the signal states inherently break the coherence between the signals

Eve can exploit to have perfect values for the monitored quantities

Eve measures every signal one-by-one using USD

		Eve'	s POV	M elen	nents	_
Emitting probability	Alice's signal	E_0	E_1	E_2	E_3	
(1-f)/2	$ \varphi_0 angle$	$q_{ m s}^{ m s}$	0	0	$q_{ m inc}^{ m s}$	H. Sugimoto et al, Phys. Rev. A 82, 032338 (2010)
(1-f)/2	$ \varphi_1 angle$	0	$q_{ m s}^{ m s}$	0	$q_{ m inc}^{ m s}$	For given f and $\alpha = p_c$ is maximized
f	$ \varphi_2\rangle$	0	0	$q_{ m s}^{ m d}$	$q_{\rm inc}^{\rm d}$	

• Eve measures every signal one-by-one using USD

• Eve measures every signal one-by-one using USD

• She collects consecutive conclusive results

• Eve measures every signal one-by-one using USD

100mm - 201022		Eve's	s POV	M elen	nents	_			
Emitting probability	Alice's signal	E_0	E_1	E_2	E_3	H Susimpto at al Dhus Day A 82 022228 (2010)			
(1-f)/2	$ \varphi_0\rangle$	$q_{\rm s}^{\rm s}$	0	0	$q_{\rm inc}^{\rm s}$	H. Sugimoto et ul, Phys. Rev. A 82, 052558 (2010)			
(1 - f)/2	$ \varphi_1\rangle$	0	$q_{\rm s}^{\rm s}$	0	$q_{\rm inc}^{\rm s}$	For given f and α p_c is maximized			
f	$ arphi_2 angle$	0	0	$q_{ m s}^{ m d}$	$q_{\rm inc}^{\rm d}$				
Inconclusive results she resends vacuum signals									

- She collects consecutive conclusive results
- Based on these results she prepares new signal states and resends them to Bob

• Eve measures every signal one-by-one using USD

-		Eves	s POV	M elen	nents	_			
Emitting	Alice's signal	E_0	E_1	E_2	E_3				
(1-f)/2	$ \varphi_0\rangle$	$q_{ m s}^{ m s}$	0	0	$q_{ m inc}^{ m s}$	H. Sugimoto et al, Phys. Rev. A 82, 032338 (2010)			
(1-f)/2	$ \varphi_1\rangle$	0	$q_{ m s}^{ m s}$	0	$q_{ m inc}^{ m s}$	For given f and α p_c is maximized			
f	$ \varphi_2 angle$	0	0	$q_{ m s}^{ m d}$	$q_{ m inc}^{ m d}$	_			
Inconclusive results 🗾 she resends vacuum signals \iint									
She collects consecutive conclusive results									
Based on these results she prepares new signal states and resends them to Bob									
Intercept-resend type of attack 🛑 entanglement breaking channel									

M. Curty et al, Phys. Rev. Lett. 92, 217903 (2004) No secret key can be distilled

• Eve only resends blocks or sub-blocks that are bordered by vacuum *pulses*

Why is this necessary?

Upper security bound

Given $f: \forall \eta \exists \alpha_{\max}(f, \eta)$ such that $G_{\text{zero}}(f, \alpha_{\max}) < G(f, \alpha_{\max}, \eta)$

To be safe from the zero-error attack

Trivial upper bound for the secret key rate:

$$K \le (1-f)\eta |\alpha_{\max}(f,\eta)|^2 \equiv R_{\text{upp}}$$

Evaluation of the bound

A real life example

COW is insecure after 22.6 km

• The asymptotic scaling of the COW protocol is quadratic in the system's transmittance

- The asymptotic scaling of the COW protocol is quadratic in the system's transmittance
- Makes it inappropriate for long distance QKD

- The asymptotic scaling of the COW protocol is quadratic in the system's transmittance
- Makes it inappropriate for long distance QKD
- COW serves as an example where coherent attacks are more powerful than collective attacks

• To achieve the hoped linear scaling the scheme has to be modified

- To achieve the hoped linear scaling the scheme has to be modified
- More quantities to be monitored
- Checking coherence between non-adjacent coherent pulses
- Adding extra states

- To achieve the hoped linear scaling the scheme has to be modified
- More quantities to be monitored
- Checking coherence between non-adjacent coherent pulses
- Adding extra states

• Less simple implementation is needed